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1. Linear Algebra

1.a. Least-Squares Problem Statement

Definition 1.1 (Least Squares)

Assume matrix A and vectors x⃗ and b⃗. The problem defined by

min
x⃗
∥Ax⃗ − b⃗∥2

is a Least Squares Problem (LSP).

Example 1.2

Assume we have two dimensional data set x⃗ and y⃗ and we want to formalize a LSP to
find a linear correlation between x and y. We first formalize the goal linear correlation as

y =mx + c

where we want to find the optimal values for m and c to minimize the squared loss across
all data points. Summarizing the above equation for all data points gives us

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 1
x2 1
⋮

xn 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
m
c
] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1
y2
⋮

yn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Where

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 1
x2 1
⋮

xn 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, x⃗ = [
m
c
] , y⃗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1
y2
⋮

yn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

And therefore

min
x⃗
∥Ax⃗ − b⃗∥2 =min

m,c

n

∑
i=1

(yi − (mxi + c))
2
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Theorem 1.3 (Ordinary Least Squares)

Given the column space of the matrix A, for vector b⃗ not in the said column space,
Ax⃗ − b⃗ = e⃗ must be orthogonal to the columns of A. (Pythagora’s theorem)
Therefore, the dot products of every column of A and e⃗ must be zero, i.e.

A⊺(Ax⃗ − b⃗) = 0

A⊺Ax⃗ −A⊺b⃗ = 0

A⊺Ax⃗ = A⊺b⃗

x⃗ = (A⊺A)−1A⊺b⃗

We conclude that the solution for Ordinary Least Squares (OLS) is

x⃗∗ = argmin
x⃗
∥Ax⃗ − b⃗∥2 = (A⊺A)−1A⊺b⃗

1.b. Norm

Definition 1.4 (Norm)

A Norm is defined as
f ∶X→ R

For vector space X.
The norm of x is denoted as ∥x∥.
For any vector x and y, we have

• ∥x∥ ≥ 0 and ∥x∥ = 0 iff x = 0⃗

• ∥x + y∥ ≤ ∥x∥ + ∥y∥

• ∥αx∥ = ∣α∣ ∗ ∥x∥

Definition 1.5 (l-p Norm)

Generally, l-p norm is defined as

∥x⃗∥p ∶= (∑ ∣xi∣
p)

1
p ; 1 ≤ p <∞

Commonly used norms:

• ∥x⃗∥1 = ∑ ∣xi∣

• ∥x⃗∥2 =
√
∑ ∣xi∣

2

• ∥x⃗∥∞ =max ∣xi∣

5
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Theorem 1.6 (Cauchy-Schwartz Inequality)

< x⃗, y⃗ >= x⃗⊺y⃗ = ∥x⃗∥2∥y⃗∥2 cos θ

Since −1 ≤ cos θ ≤ 1,
< x⃗, y⃗ >= x⃗⊺y⃗ ≤ ∥x⃗∥2∥y⃗∥2

Theorem 1.7 (Holder’s Inequality)

For p, q ≥ 1 s.t. 1
p +

1
q = 1,

∣x⃗⊺y⃗∣ ≤
n

∑
i=1

∣xiyi∣ ≤ ∥x⃗∥p∥y⃗∥p

i.e., Cauchy-Schwartz is a narrowed case of Holder’s Inequality.

1.c. Gram-Schimdt

Theorem 1.8 (Gram-Schimdt/QR-decomposition)

Let X be a vector space with basis {a⃗1, a⃗2, . . . , a⃗n}, which is orthonormal. For any matrix
A,

A = QR

[a⃗1, a⃗2, . . . , a⃗n] = [q⃗1, q⃗2, . . . , q⃗n]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r⃗11 r⃗12 ⋯ r⃗1n
0 r⃗22 ⋯ r⃗2n
0 0 ⋱ r⃗3n
0 0 0 r⃗nn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Where Q is orthonormal andR is upper-triangular.

Theorem 1.9 (Fundamental Theorem of Linear Algebra)

For matrix A ∈ Rm∗n,
Null(A)⊕Range(A⊺) = Rn

Where ⊕ denotes ”direct sum” and Range(A⊺) is the column space of A⊺. With the said
equation we can also conclude that

Range(A)⊕Null(A⊺) = Rm

6
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Theorem 1.10 (orthogonal decomposition theorem)

X a vector space and S a subspace of X. Then for any x⃗ in X,

x⃗ = s⃗ + r⃗, s⃗ ∈ S, r⃗ ∈ S⊥

Such that
S⊥ = {r⃗ ∣ < r⃗, s⃗ > = 0, ∀s⃗ ∈ S}

Therefore,
X = S⊕S⊥

Example 1.11 (Minimum Norm Problem)

We want to find
min ∥x⃗∥22

subject to Ax⃗ = b⃗. From FTLA we know that

x⃗ = y⃗ + z⃗ s.t. y⃗ ∈ N(A; z⃗ ∈ R(A⊺).

And
A(y⃗ + z⃗) = 0 +Az⃗ = b⃗

Since y⃗ ⊥ z⃗,
∥x⃗∥22 = ∥y∥

2
2 + ∥z∥

2
2

Consider z⃗ = A⊺w⃗,

Az⃗ = b⃗

AA⊺w⃗ = b⃗

w⃗ = (AA⊺)−1b⃗

Therefore
z⃗ =min ∥x⃗∥22 = A

⊺(AA⊺)−1b⃗

1.d. Symmetric Matrices

Definition 1.12

Matrix A is symmetric if A = A⊺, i.e. Aij = Aji.
Set Sn means the set of symmetric matrices of dimension n.

7
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Theorem 1.13 (Spectral Theorem)

If matrix A ∈ S⋉, then

• All eigenvalues of A are real numbers

• Eigenspaces are orthogonal

• dim(N(λiI −A)) = µi where µi is the algebraic multiplicity of λi

This means that A is always diagonalizable. i.e.:

A = UΛU⊺

where U orthonormal and Λ diagonal. Orthonormal (or, unitary) means that the columns
of U are orthogonal and all columns are normalized, i.e.

U−1 = U⊺

Remark 1.14

For a diagonalizable n*n matrix A that has n linearly independent eigenvectors, A can
be factorized as

A = UΛU⊺

Where U orthonormal and Λ is a diagonal matrix consists of the eigenvalues of A such
that

Λ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

λ1

⋱

λi

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Therefore it is also called an eigenvalue decomposition.

1.e. Principal Component Analysis

Definition 1.15

For A ∈ S, its Rayleigh coefficient is defined as

R =
x⃗⊺Ax⃗

x⃗⊺x⃗

The Rayleigh coefficient can bound the eigenvalues of A such that,

λmin(A) ≤
x⃗⊺Ax⃗

x⃗⊺x⃗
≤ λmax(A)

PCA is very similar to Singular Value Decomposition (SVD). SVD has more nice properties
than PCA.

8
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1.f. Singular Value Decomposition

Theorem 1.16 (SVD)

Let A ∈ Rm∗n, the SVD of A is given as

A = UΣV ⊺

Where
U ∈ Rm∗m, Σ ∈ Rm∗n, V ∈ Rn∗n

and Σ has real entries in its diagonal (the singular values) and zero’s else where. If
Rank(A) = r, we can rewrite A as

A = σ1u⃗1v⃗
⊺
1 + σ1u⃗1v⃗

⊺
1 +⋯ + σru⃗rv⃗

⊺
r

Proof. For A ∈ Rm∗n, consider symmetric matrix A⊺A that has eigenvalues λ1⋯λr > 0 with
corresponding eigenvectors v1⋯vr and λr+1⋯λn = 0. Then we know that

A⊺Av⃗i = λiv⃗i

Let

V =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∣ ∣

v⃗1 ⋯ v⃗n
∣ ∣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Define σi =
√
λi, let

Av⃗i = σiu⃗i i ≤ r

for some vector u⃗i.

Claim. u⃗i are orthonormal.

u⃗⊺i u⃗j =
(Av⃗i)⊺

σi

(Av⃗j)

σj

=
1

σiσj

v⃗⊺i A
⊺Av⃗j A⊺Av⃗j = λj v⃗j

=
1

σiσj

v⃗⊺i λj v⃗j

=
λj

σiσj

v⃗⊺i v⃗j v⃗iv⃗j orthonormal

= {
0 i ≠ j
1 i = j

Therefore u⃗i are orthonormal. Recall that A has rank r, we let

Vr = V =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∣ ∣

v⃗1 ⋯ v⃗r
∣ ∣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

9



Zhiyu Ryan An EECS 127/227A - Optimization Models in Engineering

Hence

AVr =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∣ ∣

u⃗1 ⋯ u⃗r

∣ ∣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

σ1

⋱

σr

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= UrΣr

A = UΣV ⊺

Since V orthonormal and V −1 = V ⊺ ∎

Remark 1.17 (geometric interpretation of SVD)

Consider linear transformation on vector x⃗ given by matrix A, s.t.

Ax⃗ = UΣV ⊺x⃗

SVD helps breaking the transformation into three smaller steps, i.e.

• orthonormal transformation (rotate/reflect) by V,

• scaling by Σ,

• orthonormal transformation by U.

The following illustration is an example of a 2D transformation Ax⃗. It shows the decom-
posed linear transformation through the unit circles relative to the original unit circle at
different stages of the transformation.

10
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1.g. Low-Rank Approximation

Definition 1.18 (matrix norms)

There are two ways to interpret a matrix, either as an operator or as a block of data.
Frobenius norm consider the matrix as a block of data.
Frobenius norm of matrix A is defined as

∥A∥F =

¿
Á
ÁÀ

m

∑
i=1

n

∑
j=1

a2ij =
√
tr(A⊺A)

Frobenius norm is invariant to orthonormal transformations, i.e. given U an orthonormal
matrix,

∥UA∥F = ∥AU∥F = ∥A∥F

Spectral norm, or l2 norm, interpret the matrix as an operator and is defined as

∥A∥2 = max
∥x⃗∥2=1

∥Ax⃗∥2 =max
∥x⃗∥=1

√
x⃗⊺A⊺Ax⃗ =

√
λmax(A⊺A) = σmax(A

⊺A)

Intuitively, the spectral norm of a matrix A is the largest scaling that A can do (recall
the Σ matrix that is used to scale the unit circle in the three steps of transformation
after SVD).

Theorem 1.19 (Eckart-Young-Mirsky Theorem)

A ∈ Rm∗n. Do SVD gives us

A = UΣV ⊺ =
n

∑
i=1

σiu⃗iv⃗
⊺
i

Define

Ak =
k

∑
i=1

σiu⃗iv⃗
⊺
i

We want to find the best k-rank (lower than r) approximation of A, i.e.

argmin
B∈Rm∗n, Rank(B)=k

∥A −B∥F

Suprisingly, Eckart-Young-Mirsky Theorem tells us that

argmin
B∈Rm∗n, Rank(B)=k

∥A −B∥F = Ak

Moreover,
argmin

B∈Rm∗n, Rank(B)=k

∥A −B∥2 = Ak

This theorem relates two completely different norms and is not obvious at all. It shows
how fundamental SVD is, such that in any way of looking at a matrix, the decomposition
shows up.

11
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Remark 1.20

Eckart-Young-Mirsky Theorem can be used to compress images. For an image, the
matrix that represents the pixels of the image can be reduced to a lower rank matrix,
and hence a smaller set of data, while remains relatively high resolution. The Ak

matrix captures the key features of the image because it keeps k largest
singular values and their corresponding vectors that contribute most to the
dataset/transformation.

Definition 1.21 (trace)

The trace of a matrix is defined as

trace ∶= Rn∗n → R

trace(A) =
n

∑
i=1

aii

Remark 1.22 (Orthonormal transformation invariance of Frobenius norm)

Proof that ∥UA∥F = ∥AU∥F = ∥A∥F

Proof. Recall that ∥A∥F =
√
tr(A⊺A). By definition, for any matrices A and B, we have

tr(AB) = tr(BA) Then,

∥AU∥F =
√
tr((AU)⊺(AU))

=
√
tr(U⊺A⊺AU)

=
√
tr(UU⊺A⊺A)

=
√
tr(A⊺A)

= ∥A∥F

∎

Remark 1.23 (Frobenius norm is the sqrt of the sum of the squares of the singular values)

∥A∥F = ∥UΣV ⊺∥F = ∥Σ∥F

=

¿
Á
ÁÀ

n

∑
i=1

σ2
i

12
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Proof of Eckart-Young-Mirsky
Goal: B: rank(k), ∥A −B∥F ≥ ∥A −Ak∥F

Proof.

∥A −Ak∥F = ∥
n

∑
i=k+1

σiu⃗iv⃗i∥F =

¿
Á
ÁÀ

n

∑
i=k+1

σ2
i

Note that the goal is true iff

n

∑
i=1

σ2
i (A −B) ≥

n

∑
i=k+1

σ2
i (A)

Further note that the previous statement is true iff:

σ2
i (A −B) ≥ σ

2
k+i(A)

Let σk+i(A)be the k+ith largest singular value of A. Hence

σk+i(A) = σmax(A −Ak)

Denote A-B = C. Then
σi(A −B) = σi(C) = ∥C −Ci−1∥2

Since B has rank k,
∥B −Bk∥2 = 0

Add it to the previous equation gives us

σi(A −B) = ∥C −Ci−1∥2 + ∥B −Bk∥2

≥ ∥C +B −Ci−1 −Bk∥2

≥ ∥A −Ci−1 −Bk∥2

Let D = Ci−1 +Bk. Rank(D) ≤ i-1+k. Then

σi(A −B) ≥ ∥A −D∥2

Consider the solution to the optimization problem

argmin
D, rank(D)≤i+k−1

∥A −D∥2 = Ak + i − 1

min
rank(D)≤i+k−1

∥A −D∥2 = σk+1(A)

Finally, bring the above result back to the previous equation gives us

σi(A −B) ≥ σk+1(A)

as desired. ∎

13
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2. Vector Calculus

Theorem 2.1 (Taylor’s Theorem for Vectors)

For f(x⃗) ∶= Rn → R, the derivative of f is

f(x⃗0 +∆x⃗) = f(x⃗0) +∇f ∣
⊺
x⃗=x⃗0

∆x⃗ +
1

2!
(∆x⃗)⊺∇2f ∣x⃗=x⃗0∆x⃗

Where

Gradient = ∇f ∣⊺x⃗=x⃗0

Hessian = ∇2f ∣x⃗=x⃗0

And
f(x⃗0) +∇f ∣

⊺
x⃗=x⃗0

∆x⃗

is the first-order approximation (a hyperplane).

Definition 2.2 (Gradient)

The gradiant ∇f(x⃗) captures change according to all components of x⃗. It is defined as

∇f(x⃗) = [ ∂
∂x1

f ∂
∂x2

f ⋯ ∂
∂xn

f]

The gradient always has the same dimension as the input vector.

Definition 2.3 (Hessian)

The hessian is a matrix that captures the change according to all gradients. It is defined
as

∇2f(x⃗)ij =
∂f

∂xi∂xj

Hessian is often symmetric.

14



Zhiyu Ryan An EECS 127/227A - Optimization Models in Engineering

Example 2.4

Let
f(x⃗) = ∥x∥22, f ∶= R2 → R

Then the gradient of this function f is

∇f(x⃗) = [
2x1

2x2
] = 2x⃗

And the hessian is

∇2f(x⃗) = [
2 0
0 2
]

According to taylor theorem,

f(x⃗ +∆x⃗) = (x2
1 + x

2
2) + [2x1 2x2] [

∆x1

∆x2
] +

1

2
[∆x1 ∆x2] [

2 0
0 2
] [

∆x1

∆x2
]

= x2
1 + x

2
2 + 2x1∆x1 + 2x2∆x2 +∆x2

1 +∆x2
2

= (x1 +∆x1)
2 + (x2 +∆x2)

2

Example 2.5

Let

f(x⃗) = x⃗⊺a⃗ =
n

∑
i=1

xiai

Then the gradient of this function f is

∇f(x⃗) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1
a2
⋮

an

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= a⃗

And the hessian is
∇2f(x⃗) = 0

15
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Example 2.6

Let
f(x⃗) = x⃗⊺Ax⃗

We can see that

f(x⃗) = x⃗⊺Ax⃗

= [x1 ⋯ xn]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a11 ⋯ a1n
⋮ ⋱ ⋮

am1 ⋯ amn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1

⋮

xn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=∑
i

∑
j

xiaijxj

Since all terms that contain xi is

∑
j≠i

xiaijxj +∑
j≠i

xjajixi + x
2
i aii

We know that
∂f

∂xi

=∑
j

(aij + aji)xj

Therefore the gradient of this function f is

∇f(x⃗) = (A +A⊺)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1

⋮

xn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= (A +A⊺)x⃗

The hessian is
∇2f(x⃗) = A +A⊺

Theorem 2.7 (The Main Theorem)

Let f ∶ Rn → R and f is differentiable everywhere. Consider the optimization problem
subject to

argmin
x⃗, x⃗∈Ω

f(x⃗)

Where Ω is an open set in Rn

Then if x⃗∗ is an optimal solution, then

df

dx
(x∗) = 0

Note that the converse is not necessarily true.
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3. Regression

3.a. Sensitivity

Definition 3.1 (problem statement)

Consider optimization problem
Ax⃗ = y⃗

Under the special case that A ∈ Rn∗n and is invertible. Now we apply a change to y such
that y⃗ → y⃗ + δy⃗. Because of this, x⃗→ x⃗ + δx⃗. How big is δx⃗?

Theorem 3.2 (condition number)

The value we are interested in is ∥δx⃗∥2
∥x⃗∥2

. To investigate this value, we transform the equation
such that

A(x⃗ + δx⃗) = y⃗ + δy⃗

Aδx⃗ = δy⃗

δx⃗ = A−1δy⃗

∥δx⃗∥2 = ∥A
−1δy⃗∥2

Recall that

∥A∥2 = max
∥y∥2=1

∥Ay⃗∥2 =max
y

∥Ay⃗∥2
∥y∥2

= σmax

Therefore by the definition of the spectral norm,

∥δx⃗∥2 = ∥A
−1δy⃗∥2 ≤ ∥A

−1∥2∥δy⃗∥2

This gives us an upperbound of the solution. To find the lowerbound,

Ax⃗ = y⃗

∥y⃗∥2 = ∥Ax⃗∥2 ≤ ∥A∥2∥x⃗∥2

∥x⃗∥2 ≥
∥y⃗∥2
∥A∥2

Combining these two inequalities gives

∥δx⃗∥2
∥x⃗∥2

≤
∥A−1∥2∥δy⃗∥2
∥y⃗∥2/∥A∥2

≤ ∥A∥2∥A
−1∥2
∥δy⃗∥2
∥y⃗∥2

≤ (
σmax

σmin

)
∥δy⃗∥2
∥y⃗∥2

The term σmax

σmin
is called the condition number of a matrix. If the condition number is

large, a small change in y would cause a large change in x.

17
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3.b. Shift property of eigenvalues

Theorem 3.3 (Shift property of eigenvalues)

Consider matrix A. We add a diagonal matrix to A and change it to A + λI. Then for λ1

and v⃗1 be the first eigenpair of A,

(A + λI)v⃗1 = Av⃗1 + λv⃗ = λ1v⃗1 + λv⃗1 = (λ1 + λ)v⃗

The eigenvalue of the new matrix A + λI is shifted by λ, but its eigenvector remain
unchanged.

3.c. Ridge Regression

Theorem 3.4 (Ridge regression)

Consider the optimization problem

min
x⃗
∥Ax⃗ − b⃗∥2 + λ2∥x⃗∥22

Where λ2∥x⃗∥22 is called the regularizer. We have

f(x⃗) = (Ax⃗ − b⃗)⊺(Ax⃗ − b⃗) + λ2x⃗⊺x⃗

= x⃗⊺A⊺Ax⃗ − x⃗⊺A⊺b⃗ − b⃗⊺Ax⃗ + λ2x⃗⊺x⃗ + b⃗⊺b⃗

The gradient of f is
∇f(x⃗) = 2A⊺Ax⃗ − 2(b⃗⊺A)⊺ + 2λ2x⃗

Setting the gradient to zero gives us

(A⊺A + λ2I)x⃗∗ = A⊺b⃗

x⃗∗ = (A⊺A + λ2I)−1A⊺b⃗

Ridge regression has two interpretations.

• We want to shift the eigenvalues of A to limit the condition number so it is not too
large.

• Without the regularizer, the predicted coefficient of the polynomial tend to be really
large (106-level large). The regularizer integrated the size of x into the minimizing
terms and controls the size of the predicted value so that it is not insanely large.

Note: the solution to the ridge regression is not the same as the solution to OLS. In
general, these two solutions are distinct.

3.d. Tikhonov regularization

18



Zhiyu Ryan An EECS 127/227A - Optimization Models in Engineering

Definition 3.5 (Tikhonov regularization)

Consider data Ax⃗ = b⃗. We decide to add weights W1 to the data points such that the
weights represents the ”importance” or ”confidence.” We then add some new data W2

to A and a corresponding x⃗0 to b⃗. With the additional information, the original data
becomes:

W1 [
A
W2
] x⃗ = [

b⃗
x⃗0
]

where W1 and W2 are matrices. The optimization problem becomes:

min
x⃗
∥W1(Ax⃗ − b⃗)∥

2
2 + ∥W2(x⃗ − x⃗0)∥

2
2

Such problem is called Tikhonov regression.

3.e. Probablistic perspective

Definition 3.6 (Problem statement)

Consider model
yi = g(xi) + zi

Where zi is noise. We have some information about the noise such that

zi ∼ N(0, σ
2
i )→ f(zi) =

e−z
2
i /2σ

2
i

√
2πσi

This model is our data points. Assume the model is linear, i.e. g(x⃗i) = x⃗
⊺
i w⃗. In this

context, we can call w⃗ as our ”model”. We can rewrite the original equation to

⎡
⎢
⎢
⎢
⎢
⎢
⎣

y1
⋮

yn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⋯ x⃗⊺1 ⋯
⋮

⋯ x⃗⊺n ⋯

⎤
⎥
⎥
⎥
⎥
⎥
⎦

w⃗ +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

z1
⋮

zn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

such that y⃗ ≈ Xw⃗. We could solve this problem by OLS, but OLS does not count into
consideration the information we know about the noise and thus gives suboptimal solution.
Is there a better way to choose w⃗?
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Theorem 3.7 (Maximum Likelihood estimation)

Goal: find w⃗ that makes observed data most likely, i.e.

argmax
w⃗0

f(Y1 = y1,⋯, Yn = yn∣w⃗ = w⃗0)

Assume zi i.i.d. Then we can rewrite the original problem into

argmax
w⃗0

n

∏
i=1

f(Yi = yi∣w⃗ = w⃗0)

Note that

f(Yi = yi∣w⃗ = w⃗0) = f(x⃗
⊺
i w⃗0 + zi = yi∣w⃗ = w⃗0

= f(zi = yi − x⃗
⊺
i w⃗0∣w⃗ = w⃗0)

=
e
−(yi−x⃗⊺i w⃗0)2

2σ2
i

√
2πσi

Therefore

argmax
w⃗0

n

∏
i=1

f(Yi = yi∣w⃗ = w⃗0) = argmax
w⃗0

n

∏
i=1

e
−(yi−x⃗⊺i w⃗0)2

2σ2
i

√
2πσi

= argmax
w⃗0

1

(
√
2π)n∏

n
i=1 σi

n

∏
i=1

e
−(yi−x⃗⊺i w⃗0)2

2σ2
i

= argmax
w⃗0

1

(
√
2π)n∏

n
i=1 σi

exp{−
n

∑
i=1

−(yi − x⃗
⊺
i w⃗0)

2

2σ2
i

}

= argmax
w⃗0

−
n

∑
i=1

−(yi − x⃗
⊺
i w⃗0)

2

2σ2
i

= argmin
w⃗0

n

∑
i=1

−(yi − x⃗
⊺
i w⃗0)

2

2σ2
i

= argmin
w⃗0

∥S(Xw⃗0 − y⃗)∥
2
2

Where

S =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
1

2σ2
1

⋱
√

1
2σ2

n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Theorem 3.8 (Maximum a posteriori estimation (MAP))

Based on the problem stated in MLE, what if we have a prior on w⃗? Again, we have

yi = g(xi) + zi

zi ∼ N(0, σ
2
i )→ f(zi) =

e−z
2
i /2σ

2
i

√
2πσi

In addition,
wi ∼ N(µi, ρ

2
i )

i.e.

w⃗ ∼ N(µ⃗,Σw⃗) s.t. Σw⃗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ρ21
⋱

ρ2n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Goal: find the most likely w⃗ given data y1,⋯, yn, i.e.

argmax
w⃗

f(w⃗∣Y⃗ = y⃗)

By the Bayes theorem,

f(w⃗∣Y⃗ = y⃗) =
f(Y⃗ = y⃗∣w⃗)fw⃗

fY⃗

Hence

argmax
w⃗

f(w⃗∣Y⃗ = y⃗) = argmax
w⃗

f(Y⃗ = y⃗∣w⃗)f(w⃗)

= argmax
w⃗
(

n

∏
i=1

f(Y = yi∣w⃗)) f(w⃗)

Borrowing the calculation we did in MLE,

argmax
w⃗

f(w⃗∣Y⃗ = y⃗) = argmax
w⃗

n

∏
i=1

exp{
−(yi−x⃗

⊺
i w⃗0)

2

2σ2
i
}

√
2πσi

exp{−(w⃗ − µ⃗)⊺Σ−1W (w⃗ − µ⃗)}

(
√
2π)n(∏ρi)

= argmax
w⃗

exp{
n

∑
i=1

−(yi − x⃗
⊺
i w⃗0)

2

2σ2
i

− (w⃗ − µ⃗)⊺Σ−1W (w⃗ − µ⃗)}

= argmax
w⃗

n

∑
i=1

−(yi − x⃗
⊺
i w⃗0)

2

2σ2
i

− (w⃗ − µ⃗)⊺Σ−1W (w⃗ − µ⃗)

= argmin
w⃗

n

∑
i=1

(yi − x⃗
⊺
i w⃗0)

2

2σ2
i

+ (w⃗ − µ⃗)⊺Σ−1W (w⃗ − µ⃗)

= argmin
w⃗
∥S(Xw⃗0 − y⃗)∥

2
2 + ∥

√

Σ−1W (w⃗ − µ⃗)∥
2
2

For example, if some ρ’s are large (note that ρ’s are the variances of the w’s), you do not
need to care too much about keeping w and µ close in their values. But if ρ’s are small,
than differences in values of w and µ are going to have a large impact (Therefore you
should put a high weight on keeping w and µ similar).
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4. Convexity

4.a. Convex Sets

Definition 4.1 (convex combination)

Consider x⃗i,
n

∑
i=1

λix⃗

is a convex combination of x⃗ if

λi ≥ 0 and
n

∑
i=1

λi = 1

Definition 4.2 (convex set)

A set C is convex if the line segment joining any two points in the set is contained in the
set.

Example 4.3

Consider C a vector space. If C is convex then

θx⃗i + (1 − θ)x⃗2 ∈ C ∀θ

if x⃗1, x⃗2 ∈ C and θ ∈ [0,1].

Example 4.4

Let
C = {x⃗ ∣ a⃗⊺x⃗ = b}

Note that C is a hyperplane. It can be rewritten into

a⃗(x⃗ − x⃗0) = 0

a⃗⊺x⃗ = a⃗⊺x⃗0 = b

To check wheter C is convex, consider x⃗1, x⃗2 ∈ C and let

x⃗3 = θx⃗1 + (1 − θ)x⃗2

We know that
a⃗⊺x⃗3 = θa⃗

⊺x⃗1 + (1 − θ)a⃗
⊺x⃗2 = b

Therefore x⃗3 belongs to C and C is convex.
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Remark 4.5

A hyperplane (a plane which’s dimension is 1 less than the dimension of its ambient
space) divides the space into two half spaces. The set

{x⃗ ∣ a⃗⊺x⃗ ≥ b}

defines a hyperplane, where a⃗ is perpendicular to all vectors on this plane. This hyperplane
naturally generates a counter part

{x⃗ ∣ a⃗⊺x⃗ ≤ b}

Example:
P = {x⃗ ∣ a⃗⊺(x⃗ − x⃗0) ≥ 0} N = {x⃗ ∣ a⃗⊺(x⃗ − x⃗0) ≤ 0}

devides the space into two parts (P for positive and N for negative).

Example 4.6

Consider
P = {A ∣ A ∈ Sn, A is PSD}

Recall that A is PSD iff
x⃗⊺Ax⃗ ≥ 0 ∀x⃗ ∈ Rn

Is P convex? Let
A1, A2 ∈ P and A3 = θA1 + (1 − θ)A2

Then

x⃗⊺A3x⃗ = θ(x⃗
⊺A1x⃗) + (1 − θ)x⃗

⊺A2x⃗ ≥ 0

Ô⇒ A3 ∈ P

Therefore P is convex.

Remark 4.7

Linear transformations always preserve convexity.

Theorem 4.8 (separating hyperplane theorem)

Let C, D be convex sets and C ∩D = ∅. Then there exists hyperplane a⃗⊺x⃗ = b separating
two sets such that

∀x⃗ ∈ C a⃗⊺x⃗ ≥ b

∀x⃗ ∈D a⃗⊺x⃗ ≤ b

Proof: TODO
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4.b. Convex Functions

Definition 4.9 (convex functions)

Let
f ∶ Rn → R

Function f is convex if the domain of f is a convex set and

f(θx⃗ + (1 − θ)y⃗) ≤ θf(x⃗) + (1 − θ)f(y⃗) 0 ≤ θ ≤ 1

The above inequality is called Jensen’s Inequality. Here is an example of a convex
function that visualizes the Jensen’s Inequality.

0

f(y⃗)
f(x⃗)

θf(x⃗) + (1 − θ)f(y⃗)

f(θx⃗ + (1 − θ)y⃗)

f

x

y

If the ”cord” is always above the function, the function is convex. If the ”cord” is
always below the function, the function is concave.

Theorem 4.10

If a function f is convex, any local minimum is the global minimum.

Definition 4.11 (Epigraph)

The epigraph of a function f is defined as

Epif = {(x, t) ∣ x ∈ domf f(x) ≤ t}

f is a convex function ⇐⇒ Epi f is a convex set.

Theorem 4.12 (First-order condition)

Define f ∶ Rn → R a differentiable function. Then f is convex iff

f(y⃗) ≥ f(x⃗) +∇f(x⃗)⊺(y⃗ − x⃗) ∀x⃗, y⃗ ∈ domf 0 ≤ θ ≤ 1
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Remark 4.13 (Implication of the FOC)

If ∇f(x⃗∗) = 0 and f is convex, then

f(y⃗) ≥ f(x⃗) + 0(y⃗ − x⃗)

f(y⃗) ≥ f(x⃗)

For all y in the domain, which means that x⃗∗ is a global minimum!!

Theorem 4.14 (Second-order condition)

Let f ∶ Rn → R who’s domain is convex and is twice-differentiable. f is convex iff

∇2f(x⃗) ⪰ 0

In another word, ∇2f(x⃗) is positive semi-definite.

Definition 4.15 (Strict Convexity)

Dom f convex. For all x y in domain, f is strictly convex iff

f(θx⃗ + (1 − θ)y⃗) < θf(x⃗) + (1 − θ)f(y⃗)

FOC:
f(y⃗) > f(x⃗) +∇f(x⃗)⊺(y⃗ − x⃗) ∀x⃗, y⃗ ∈ domf 0 < θ < 1

SOC:
∇2f(x⃗) ≻ 0

Remark 4.16

If f is a stright line, f is both convex and concave, but not strictly convex.

Definition 4.17 (Strong Convexity)

Dom f convex. For all x y in domain, f is µ-strongly convex iff

f(y⃗) ≥ f(x⃗) +∇f(x⃗)⊺(y⃗ − x⃗) +
µ

2
∥y⃗ − x⃗∥2
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Remark 4.18 (implication of strong convexity)

Recall that by Taylor’s theorem, for f(x⃗) ∶= Rn → R, the derivative of f is

f(y⃗) ≈ f(x⃗) +∇f⊺(y⃗ − x⃗) +
1

2
(y⃗ − x⃗)⊺∇2f(y⃗ − x⃗)

If we let µI = ∇2f , we have

µ

2
∥y⃗ − x⃗∥2 =

1

2
(y⃗ − x⃗)⊺µI(y⃗ − x⃗)

Thus the implication of strong convexity is that the hessian of f is at least µI.

Remark 4.19

Strong convexity Ô⇒ strict convexity Ô⇒ convexity

Remark 4.20

For matrices A and B,
A ⪰ B Ô⇒ A −B ⪰ 0
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5. Gradient Descent

5.a. Introduction to Gradient Descent

Definition 5.1 (Gradient Descent)

Gradient Descent is an approach to unconstrained optimization problems. The basic idea
is to nudge the function in the right direction by a little bit in every step, and after a lot
of steps the function will arrive at a local minimum. Formally, for a step size s and a
direction v⃗,

f(x⃗ + sv⃗) ≈ f(x⃗) + s < ∇f(x⃗), v⃗ >

Recall Cauchy-Schwartz, the magnitude of < ∇f(x⃗), v⃗ > is maximized if v⃗ is aligned with
∇f(x⃗). We want to minimize the inner product while maximize its magnitude so the
function steps towards the minimum at the fastest rate, hence we choose

v⃗ = −∇f(x⃗)

The formal algorithm for gradiant descent is defined as follows. Let x⃗ be the parameter
of function f. At step k,

x⃗k+1 = x⃗k − η∇f(x⃗k)

Where x⃗0 is the initial point and η is the stepsize.

Example 5.2 (GD on LS)

Let f(x⃗) = ∥Ax⃗ − b⃗∥22. It has a direct solution of x⃗∗ = (A⊺A)−1A⊺b⃗. If A is a n*n matrix,
the runtime of computing the direct solution is at least O(n3) (taking a matrix inverse is
approx. O(n3)). It is computationally cheaper to use gradient descent. Thus,

∇f(x⃗) = 2A⊺(Ax⃗ − b⃗)

x⃗k+1 = x⃗k − η∇f(x⃗k)

= x⃗k − η2A
⊺(Ax⃗ − b⃗)

x⃗k+1 = (I − 2ηA
⊺A)x⃗k + 2ηA

⊺b⃗

Next we need to prove that this algorithm will converge. The following is one of the ways
to prove convergence. The difference between optimal value and the k-step value is

x⃗k+1 − (A
⊺A)−1A⊺b⃗ = (I − 2ηA⊺A)x⃗k + 2ηA

⊺b⃗ − (A⊺A)−1A⊺b⃗

= (I − 2ηA⊺A)x⃗k + 2η(A
⊺A)(A⊺A)−1A⊺b⃗ − (A⊺A)−1A⊺b⃗

= (I − 2ηA⊺A)x⃗k + (2ηA
⊺A − I)(A⊺A)−1A⊺b⃗

= (I − 2ηA⊺A)(x⃗k − (A
⊺A)−1A⊺b⃗)

Hence if the absolute values of the eigenvalues of I − 2ηA⊺A are strictly less than 1, GD
converges for LS.
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Example 5.3 (GD on LS continued)

Since we showed in the previous part that

x⃗k+1 − (A
⊺A)−1A⊺b⃗ = (I − 2ηA⊺A)k+1(x⃗k − (A

⊺A)−1A⊺b⃗)

Where η (step size) is a parameter of choice and we want to make sure the absolute values
of the eigenvalues of (I − 2ηA⊺A) is strictly less than 1, we should choose an appropriate
η such that the algorithm converges.

5.b. Gradient Descent for µ-strongly convex L-smooth functions

Definition 5.4 (Bounds of convex functions)

Recall the definition of µ-strongly convex: Dom f convex. For all x y in domain, f is
µ-strongly convex iff

f(y⃗) ≥ f(x⃗) +∇f(x⃗)⊺(y⃗ − x⃗) +
µ

2
∥y⃗ − x⃗∥2

Intuitively, this means that there exists a quadratic function under f such that this
quadratic function is the lower-bound of f, hence the gradient of f is changing fast enough.
On the other hand, L-smooth means that there exists a quadratic function such that
f is upper-bounded by this function, hence the gradient of f is not changing too fast.
Formally,

f(y⃗) ≤ f(x⃗) +∇f(x⃗)⊺(y⃗ − x⃗) +
L

2
∥y⃗ − x⃗∥22

Theorem 5.5

Let f ∶ Rn → R and define optimization problem

min
x⃗∈Rn

f(x⃗)

Let x⃗∗ be the optimal solution to the above problem. Then for GD approach

x⃗t+1 = x⃗t − η∇f(x⃗t)

I can choose an η such that

∥x⃗t+1 − x⃗∗∥
2
2 ≤ (C)

t+1∥x⃗0 − x⃗∗∥
2
2

Lemma 5.6

Let f L-smooth, then
∥∇f(x⃗)∥22 ≤ 2L(f(x⃗) − f(x⃗∗))
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Proof. Since f(x⃗∗) minimum, we have

f(x⃗∗) ≤ f(x⃗)

And

f(x⃗∗) ≤ f(x⃗ −
∇f(x⃗)

L
)

Recall the definition of L-smooth:

f(y⃗) ≤ f(x⃗) +∇f(x⃗)⊺(y⃗ − x⃗) +
L

2
∥y⃗ − x⃗∥22

We choose f(y⃗) = f(x⃗ − ∇f(x⃗)L ), then

f(x⃗ −
∇f(x⃗)

L
) ≤ f(x⃗) +∇f(x⃗)⊺(−

∇f(x⃗)

L
) +

L

2
∥ −
∇f(x⃗)

L
∥22

≤ f(x⃗) −
1

L
∥∇f(x⃗)∥2 +

1

2L
∥∇f(x⃗)∥22

≤ f(x⃗) +
1

2L
∥∇f(x⃗)∥22

Since f(x⃗∗) ≤ f(x⃗ −
∇f(x⃗)

L ),

f(x⃗∗) ≤ f(x⃗) +
1

2L
∥∇f(x⃗)∥22

∎

Lemma 5.7

If f µ-strongly convex,

∇f(x⃗)⊺(x⃗∗ − x⃗) ≥ f(x⃗) − f(x⃗∗) +
µ

2
∥x⃗∗ − x⃗∥

2
2

Proof. Recall the definition of µ-strong convexity: Dom f convex. For all x y in domain, f is
µ-strongly convex iff

f(y⃗) ≥ f(x⃗) +∇f(x⃗)⊺(y⃗ − x⃗) +
µ

2
∥y⃗ − x⃗∥2

Let y⃗ = x⃗∗. We have

f(x⃗∗) ≥ f(x⃗) +∇f(x⃗)
⊺(x⃗∗ − x⃗) +

µ

2
∥x⃗∗ − x⃗∥

2

f(x⃗∗) − f(x⃗) −
µ

2
∥x⃗∗ − x⃗∥

2
2 ≥ ∇f(x⃗)

⊺(x⃗∗ − x⃗)

−f(x⃗∗) + f(x⃗) +
µ

2
∥x⃗∗ − x⃗∥

2
2 ≤ ∇f(x⃗)

⊺(x⃗∗ − x⃗)

∎

Proof of Main Theorem (Theorem 5.5): TODO
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5.c. Introduction to Stochastic Gradient Descent

Definition 5.8

Let f ∶ Rn → R and define optimization problem

min
x⃗∈Rn

f(x⃗)

Assume the function f is of the following form:

f(x⃗) =
m

∑
i=1

1

m
fi(x⃗)

E.g. for least squares problem

1

2m
∥Ax⃗ − b⃗∥22 =

1

2m

m

∑
i=1

(a⃗⊺i x⃗ − b⃗i)
2

For

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⋯ a⃗⊺1 ⋯
⋮

⋯ a⃗⊺n ⋯

⎤
⎥
⎥
⎥
⎥
⎥
⎦

To calculate the solution of such problem using gradient descent would cost too much
computation time (order n time complexity to calculate n losses). Thus instead of
computing all of the losses, we choose one component of the gradient in each step.

x⃗k+1 = x⃗k − ηk∇fi(x⃗k)

This works because

E[∇fi(x⃗k)] =
1

m

m

∑
i=1

fi(x⃗)

= ∇f(x⃗k)

We usually let η be time-dependent.
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Example 5.9

Consider optimization problem

f(x⃗) =
1

m

m

∑
i=1

∥x⃗ − p⃗i∥
2
2

We use SGD to solve this problem. Let step size η = 1
t and x⃗0 = 0, then

∇f(x⃗) =
1

2
2(x⃗ − p⃗i) = x⃗ − p⃗i

The x⃗ in each step goes like

x⃗0 = 0

x⃗1 = x⃗0 −
1

1
(x⃗0 − p⃗1) = p⃗1

x⃗2 = x⃗1 −
1

2
(x⃗1 − p⃗2) =

p⃗1 + p⃗2
2

x⃗3 = x⃗2 −
1

3
(x⃗2 − p⃗3) =

p⃗1 + p⃗2 + p⃗3
3

The future terms of GD can be projected to

x⃗i =
∑

i
j=1 pj

i

5.d. Projected Gradient Descent

Definition 5.10 (projected gradient descent)

Differ from ordinary gradient descent, projected gradient descent solves for the general
GD problem where x⃗ is constrained. Formally, we want to solve the problem

min
x⃗

f(x⃗) , x⃗ ∈ C

Such that
x⃗k+1 =∏

C

x⃗k − η∇f(x⃗k)

And

∏
C

(y⃗) = argmin
δ⃗∈C

∥y⃗k+1 − δ⃗∥
2
2

However, this could still be computationally expensive, therefore is replaced by Conditional
Gradient Descent in the next subsection.

5.e. Conditional Gradient Descent

31



Zhiyu Ryan An EECS 127/227A - Optimization Models in Engineering

Definition 5.11 (conditional gradient descent/Frank–Wolfe algorithm)

Let γk be a predetermined sequence. Define

y⃗k = argmin
y⃗∈C

∇f(x⃗k)
⊺y⃗

And

x⃗k+1 = (1 − γk)x⃗k + γky⃗k

= x⃗k + γk(y⃗k − x⃗k)

Both Frank-Wolfe and PGD are generally computationally expensive, but Frank-Wolfe is
sometimes cheaper. Frank-Wolfe also has a nice sparse property but it is out of scope for
this class.
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6. Duality

6.a. Weak Duality

Remark 6.1

Gradient Descent works for unconstrained optimization problem on convex functions. It
has challenges that the function should be differentiable and convex, and at the same
time GD is computationally expensive.
Duality is a technique that transforms every problem to a convex form (the dual form).

It does not necessarily give us the solution to the original problem, but it will always
give a bound.

Theorem 6.2 (Lagrangian)

Optimization problem
p∗ =min f0(x⃗)

Under the constrains

fi(x⃗) ≤ 0, ∀i 1 ≤ i ≤m

hi(x⃗) = 0, ∀i 1 ≤ i ≤ p

The problem defined above is called a primal problem. Define Lagrangian:

L(x⃗, λ⃗, ν⃗) = f0(x⃗) +
m

∑
i=1

λifi(x⃗) +
p

∑
i=1

νihi(x⃗) ∀λi ≥ 0

Note that it is an affine function of λ and ν, which means that it is both convex and
concave. Now, define new problem

min
λ≥0

L(x⃗, λ⃗, ν⃗) ∶= g(λ⃗, ν⃗)

Over all x⃗. Examine g. Properties of g include

1. g is a function of only λ⃗, ν⃗.

2. L is an affine function of λ⃗, ν⃗.

3. By 1 and 2, g is a concave function of λ⃗, ν⃗.

4. It turns out, g(λ⃗, ν⃗) is a lower bound on the primal optimal p∗.

Proof of property No. 4: TODO
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Example 6.3 (Duality on LS)

Let A ∈ Rm∗n, m < n. Problem
min x⃗⊺x⃗ = p⃗∗

Under the constrain
Ax⃗ = b⃗

Since there is no inequality constains, the lagrangian of this problem does not have λ.

L(x⃗, ν⃗) = x⃗⊺x⃗ + ν⊺(Ax⃗ − b⃗)

g(ν⃗) =min
x⃗

L(x⃗, ν⃗)

To solve for g, we do
∇x⃗L(x⃗, ν⃗) = 2x⃗ +A

⊺ν⃗

Set gradient to zero,

x⃗ = −
1

2
A⊺ν⃗

Is the point where L is minimized. g at this point is

g(ν⃗) = L(−
1

2
A⊺ν⃗, ν⃗) = (−

1

2
A⊺ν⃗)⊺(−

1

2
A⊺ν⃗) + ν⃗⊺(−

1

2
AA⊺ν⃗ − b⃗)

=
1

4
ν⃗⊺AA⊺ν⃗ + ν⃗⊺(−AA⊺ν⃗ − b⃗)

= −
1

4
ν⃗⊺AA⊺ν⃗ − ν⃗⊺b⃗

Which is the lower bound of p∗. What is the max lower bound? In another word, we
want to find

max
ν⃗

g(ν⃗)

Since g concave, we take its gradient and set to zero:

∇ν⃗g(ν⃗) = −
1

4
2AA⊺ν⃗ − b⃗ = 0

ν⃗∗ = −2(AA⊺)−1b⃗

Thus

x⃗∗ = −
1

2
A⊺(−2(AA⊺)−1b⃗) = A⊺(AA⊺)−1b⃗
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Definition 6.4 (Dual)

Continuing the definition of lagrangian, we want to find the tightest lower bound of p∗,
formally

max
λ⃗≥0

g(λ⃗, ν⃗) = d∗

Over ν⃗, this problem is the DUAL Problem. It is a maximization problem of a concave
function under linear constrains, thus a convex program.

Remark 6.5

Properties of the Dual problem:

1. # of variables = # of constraints of the primal.

2. Always convex problem even if primal is not! :)

By 1, if the data is large but the constaints are few, the Dual problem is an easier problem
to solve.

Definition 6.6 (Weak Duality)

Continuing from the definition of lagrangian and duality, if

d∗ ≤ p∗

Then it is WEAK DUALITY.

6.b. Strong Duality

Definition 6.7 (Strong Duality)

If
d∗ = p∗

Like we seen in the Duality on LS example, then it is STRONG DUALITY.

Remark 6.8

Strong Duality Ô⇒ Weak Duality. In general, weak duality always holds, while
strong duality only holds under certain circumstances.

Definition 6.9 (duality gap)

p∗ − d∗

is called the duality gap. Duality gap = 0 iff strong duality.
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Theorem 6.10 (Minmax Inequality)

Sets X, Y. F is any function. Then,

min
x∈X

max
y∈Y

F (x, y) ≥max
y∈Y

min
x∈X

F (x, y)

Proof of Minmax Inequality:

Proof. Fix x0 ∈X, y0 ∈ Y . Define

h(y0) ∶=min
x∈X

F (x, y0)

and
g(x0) ∶=max

y∈Y
F (x0, y)

See that
h(y0) =min

x∈X
F (x, y0) ≤ F (x0, y0) ≤max

y∈Y
F (x0, y) = g(x0)

Thus

h(y0) ≤ g(x0)

max
y∈Y

h(y0) ≤min
x∈X

g(x0)

max
y∈Y

min
x∈X

F (x, y) ≤min
x∈X

max
y∈Y

F (x, y)

∎

Remark 6.11 (Implication of Minmax Inequality on Duality)

By definition,

d∗ =max
λ⃗≥0

g(λ⃗, ν⃗)

=max
λ⃗≥0

min
x⃗

L(x⃗, λ⃗, ν⃗)

How can we connect this to the primal? Consider

max
λ⃗≥0, ν⃗

(f0(x⃗) +
m

∑
i=1

λifi(x⃗) +
p

∑
i=1

νihi(x⃗))

=

⎧⎪⎪
⎨
⎪⎪⎩

f0(x⃗) if x⃗ is feasible

∞ if x⃗ is infeasible

Therefore we can write
p∗ =min

x⃗
max λ⃗ ≥ 0, ν⃗L(x⃗, λ⃗, ν⃗)

By the minmax inequality,
p∗ ≥ d∗

36



Zhiyu Ryan An EECS 127/227A - Optimization Models in Engineering

Theorem 6.12 (Slater’s Condition)

For a convex problem, strong duality holds if

∃x⃗0 such that fi(x⃗0) < 0 ∀i

In another word, the point x⃗0 is strictly feasible. Or,

x⃗0 ∈ RelativeInterior(D)

For the purpose of this class we can think of RelativeInterior as the Interior.

Theorem 6.13 (Refined Slater’s Condition)

Convex problem, f1, f2, . . . , fk that are affine,

∃x⃗0 such that fi(x⃗0) ≤ 0 ∀i = 1,2,⋯, k AND fi(x⃗0) < 0 ∀i = k + 1,⋯,m

Assume that first k constraints are affine, and the rest are whatever non-linear things
that you want them to be. You are allowed to have equality for the affine things, as long
as the non-affine things all satisfy the above strict inequality. So you don’t have to find a
point that satisfies strict inequalities on the affine things too. Sometimes it is easier to
find such point.

Remark 6.14

As long as the problem is feasible, strong duality will always hold for linear program.
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6.c. Partitioning Problem

Definition 6.15 (partitioning problem)

min
x⃗i, x⃗2

i =1
x⃗⊺Wx⃗, W ∈ Sn

Remark 6.16

Partitioning problem is not a convex problem. This is because that x⃗i can only be either
+1 or -1, thus the domain is descrete.

The lagrangian for the partitioning problem is

L(x⃗, ν⃗) = x⃗⊺Wx⃗ +
n

∑
i=1

ν⃗i(x⃗
2
i − 1)

= x⃗⊺Wx⃗ + x⃗⊺diag(ν⃗)x⃗ −
n

∑
i=1

ν⃗i

= x⃗⊺(W + diag(ν⃗))x⃗ −
n

∑
i=1

ν⃗i

If (W + diag(ν⃗)) is PSD, the problem is convex. If it is NSD, the problem is concave. The g
for the partitioning problem is

g(ν⃗) =min
x⃗

L(x⃗, ν⃗)

=

⎧⎪⎪
⎨
⎪⎪⎩

−∑
n
i=1 ν⃗i if (W + diag(ν⃗)) PSD

−∞ otherwise

We see that this problem is trivial if (W + diag(ν⃗)) is not PSD. We can rewrite this problem
as its dual:

max
n

∑
i=1

ν⃗i, subject to (W + diag(ν⃗)) ⪰ 0

This is a special kind of problem called Semi-definite Program. It is a convex problem
that can be efficiently solved. Particularly, for this problem, we choose

ν⃗ = λmin(W )

and we have the lower bound
p∗ ≥ nλmin(W )

This is an example of transforming a very hard-to-solve problem into a convex problem that
we can efficiently solve.
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6.d. LP and Duality

Example 6.17

Consider linear program
min
Ax⃗≤b⃗

c⃗⊺x⃗

The lagrangian is

L(x⃗, λ⃗) = c⃗⊺x⃗ + λ⃗⊺(Ax⃗ ≤ b⃗)

= (A⊺λ⃗ + c⃗)⊺x⃗ − b⃗⊺λ⃗

The g is

g(λ⃗) =min
x⃗

L(x⃗, λ⃗)

=

⎧⎪⎪
⎨
⎪⎪⎩

−∞ if A⊺λ⃗ + c⃗ ≠ 0

−b⃗⊺λ⃗ if A⊺λ⃗ + c⃗ = 0

The first case is trivial. In order to get a non-trivial bound, we want to calculate

d∗ = max
λ⃗≥0, A⊺λ⃗+c⃗=0

−b⃗⊺λ⃗

This is our dual problem.
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Example 6.18 (Winery)

Consider the following business problem. You have 200 kilos of merlot and 300 kilos of
shiras. You have two recipes:

• Blend 1: 4 kilos merlot + 1 kilo shiras, sell $20

• Blend 2: 2 kilos merlot + 3 kilos shiras, sell $15

You want to make q1 of blend 1 and q2 of blend 2. How to optimize our revenue? We set
up problem for this

max
q1, q2≥0

20q1 + 15q2

Subject to

4q1 + 2q1 ≤ 200

q2 + 3q2 ≤ 300

Let’s say we sell the leftover grapes. Let λ1 be the rate to sell marlot and λ2 be the rate
to sell shiras. Then we write new optimization problem

max
q1, q2≥0

20q1 + 15q2 + λ1(200 − 4q1 + 2q1) + λ2(300 − q2 + 3q2)

= max
q1, q2≥0

(20 − 4λ1 − λ2)q1 + (15 − 2λ1 − 3λ2)q2 + 200λ1 + 300λ2

Note that the first line looks like a lagrangian. From the second line we can see that

• if (20 − 4λ1 − λ2) negative, do not make blend 1. If it is positive, make as much
blend 1 as you can.

• if (15 − 2λ1 − 3λ2) negative, do not make blend 2. If it is positive, make as much
blend 2 as you can.

The strategy seems clear. But what if we have

20 − 4λ1 − λ2 = 0 AND 15 − 2λ1 − 3λ2 = 0

? Then we do not care whether to sell the grapes or to make grapes into wine. These
lambda’s are called the shadow prices of grapes. What is our minimum revenue under
these conditions? It is

min
λ1, λ2≥0

200λ1 + 300λ2

Subject to
20 − 4λ1 − λ2 = 0 AND 15 − 2λ1 − 3λ2 = 0

If plug in the numbers, you can see that the original problem and the shadow price
problem are primal and dual of each other. Note that for this particular problem, the
feasible region of the dual problem is a point.
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6.e. Duality Certificates

Definition 6.19 (certificate)

Let (λ1, ν1) be a dual feasible point, meaning that it satisfy the constaints of the dual.
Let x1 be the primal feasible point. Then we know that

p∗ ≥ g(λ1, ν1)

This implies that
f0(x1) − p

∗ ≤ f0(x1) − g(λ1, ν1)

This means that if f0(x1)−g(λ1, ν1) is small, f0(x1)−p∗ is also small. This could be used
as the stopping condition for optimization programs. Another way of writing this is that

p∗ ∈ [g(λ1, ν1), f0(x1)]

If the strong duality holds, we would also have

d∗ ∈ [g(λ1, ν1), f0(x1)]

Note that if the strong duality does not hold, the above about d∗ might not be true due
to possibly large duality gap.

6.f. Complementary Slackness

Theorem 6.20 (complementary slackness)

Consider the following situation: the primal optimal x⃗∗ and dual optimal λ⃗∗, ν⃗∗. Assume
strong duality holds, i.e. p∗ = d∗. We have

p∗ = f0(x⃗
∗) = d∗ = g(λ⃗∗, ν⃗∗)

And

g(λ⃗∗, ν⃗∗) =min
x⃗
(f0(x⃗) +

m

∑
i=1

λ∗i fi(x⃗) +
p

∑
i=1

ν∗i hi(x⃗))

≤ f0(x⃗
∗) +

m

∑
i=1

λ∗i fi(x⃗
∗) +

p

∑
i=1

ν∗i hi(x⃗
∗) (1)

Since we are considering primal problem with constraints including fi(x⃗) ≤ 0 and the
dual d∗ = maxλ⃗≥0 g(λ⃗, ν⃗), we know the term ∑

m
i=1 λ

∗
i fi(x⃗

∗) is at most zero. In addition,
the constraints of the primal problem includes hi(x⃗) = 0 and thus ∑

p
i=1 ν

∗
i hi(x⃗∗) is zero.

Therefore we could write

g(λ⃗∗, ν⃗∗) ≤ f0(x⃗
∗) + 0 + 0 = f0(x⃗

∗) (2)

If the above holds, then both inequalities (1) and (2) must in fact be equalities!
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Proof of Complementary Slackness: TODO

6.g. KKT Conditions

Remark 6.21

Karush-Kuhn-Tucker are the three people responsible for these conditions.

Theorem 6.22 (KKT Conditions)

The following enumerated conditions are necessary, but not necessarily sufficient, con-
ditions to the optimality of primal optimal x⃗∗ and dual optimal λ⃗∗, ν⃗∗. Assume strong
duality holds, i.e. p∗ = d∗. Convex OR non-convex problem. Both object function and
the contraints differentiable. Then, the fact that primal optimal x⃗∗ and dual optimal
λ⃗∗, ν⃗∗ implies

1. fi(x⃗∗) ≤ 0 ∀i = 1,⋯,m

2. hi(x⃗∗) = 0 ∀i = 1,⋯, p

3. λ∗i ≥ 0 ∀i = 1,⋯,m

4. λ∗i fi(x⃗
∗) = 0 ∀i = 1,⋯,m (Complementary Slackness)

5. ∇f0(x⃗∗) +∑λ∗i∇fi(x⃗
∗) +∑ν∗i ∇hi(x⃗∗) = 0

The fifth condition means that x⃗∗ minimizes L(x⃗, λ⃗∗, ν⃗∗), which is implied by the Main
Theorem.

Theorem 6.23 (KKT Conditions Part II)

Convex and differentiable problems. Strong duality not necessarily holds. Sufficient
conditions. x̃, λ̃, ν̃ are points. f’s are convex and h’s are affine. If the points satisfy:

1. fi(x̃) ≤ 0 ∀i = 1,⋯,m

2. hi(x̃) = 0 ∀i = 1,⋯, p

3. λ̃i ≥ 0 ∀i = 1,⋯,m

4. λ̃ifi(x̃) = 0 ∀i = 1,⋯,m

5. ∇f0(x̃) +∑ λ̃i∇fi(x̃) +∑ ν̃i∇hi(x̃) = 0

Then x̃, λ̃, ν̃ are primal+dual optimal. Note that the strong duality is not needed for
sufficiency only, but for it to be an iff statement you need strong duality:

optimality ⇐⇒ the points satisfy KKT + problem convex + hi affine + slater conditions

Proof of KKT Conditions: TODO
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7. Linear Programs

Remark 7.1

a⃗⊺x⃗ = b⃗ ⇐⇒ a⃗⊺x⃗ ≤ b⃗ AND a⃗⊺x⃗ ≥ b⃗

Theorem 7.2

All LP’s can be translated into the following standard form:

min
Ax⃗=b⃗ x⃗≥0

c⃗⊺x⃗

1. How to eliminate inequality? For expression

n

∑
j=1

aijxj ≤ b

We can rewrite it as
n

∑
i=1

aijxj + Si = bi, Si ≥ 0

2. How to get xi ≥ 0 for all xi? If xi is unconstrained, we can always express it as the
difference of two positive numbers: xi = x+i − x

−
i . For example:

min2x1 + 4x2

s.t. x1 + x2 ≥ 3

3x1 + 2x2 = 14

x1 ≥ 0

We can express the constraints by introducing a slack variable x3

x1 + x2 − x3 = 3 x3 ≥ 0

x2 = x
+
2 − x

−
2

By doing this we can rewrite the original problem as

min2x1 + 3x
+
2 − 4x

−
2

s.t. x1 + x
+
2 − x

−
2 − x3 = 3

3x1 + 2x
+
2 − 2x

−
2 = 14

x1 ≥ 0

x+2 ≥ 0

x−2 ≥ 0

x3 ≥ 0
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Definition 7.3 (Polyhedron)

Set{x⃗ ∈ Rn ∣ Ax⃗ ≥ b⃗} A ∈ Rm∗n b⃗ ∈ Rm

Is called a polyhedron. Standarf form:

Set{x⃗ ∈ Rl ∣ cx⃗ = d⃗; x⃗ ≥ 0}

Intuitively, P is the feasible region of a LP.

Definition 7.4 (Extreme points of a polyhedron)

x ∈ P is an extreme point (i.e. vertex of P) if we cannot find two vectors y⃗, z⃗ ≠ x⃗, y⃗, z⃗ ∈ P
and λ ∈ [0,1] such that x⃗ = λy⃗ + (1 − λ)z⃗.
That is, a point x is a vertex iff we cannot find two other point on this polyhedron such
that these two points form a convex combination of x.

Theorem 7.5

P has an extreme point iff P does not contain a line.

Theorem 7.6

Consider
min
Ax⃗≤b⃗

c⃗⊺x⃗

Assume 1. P has an extreme point, 2. optimal solution exists and is finite. Then there
exists an optimal solution that is an extreme point of P. (Note that this is not saying all
solutions are extreme points.)

Proof of theorem 7.6: TODO
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8. Quadratic Programs

8.a. Solutions to QP

Definition 8.1

min
1

2
x⃗⊺Hx⃗ + c⃗⊺x⃗

s.t. Ax⃗ ≤ b⃗

Cx⃗ = d⃗

Is a quadratic program. In general, QPs are not convex. However, if H =H⊺ and H is
PSD, then this is also convex.

Definition 8.2 (Moore-Penrose Pseudoinverse)

Let H be n*n matrix, H = UΣV ⊺, H has rank r, then

H = U [
Σr∗r 0
0 0

]V ⊺

Then the Moore-Penrose Pseudoinverse of H is

H† = V [
Σ−1r∗r 0
0 0

]U⊺

And

HH† = UrU
⊺
r

H†H = VrV
⊺
r

HH†H =H
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Theorem 8.3

Assume H symmetric and the problem is unconstrained. Then we can find the solution
of QP based on the following decision tree.
1. H has at least one negative eigenvalue, then p∗ = −∞ by choosing eigenvector

corresponding to negative eigenvalue.
2. H is PSD
2.1 c⃗ ∈ R(H). We rewrite f as

f(x⃗) =
1

2
x⃗⊺Hx⃗ + c⃗⊺x⃗

=
1

2
(x⃗ − x⃗0)

⊺H(x⃗ − x⃗0) + α

=
1

2
x⃗⊺Hx⃗ +

1

2
x⃗⊺0Hx⃗0 + α

c⃗ = −Hx⃗0 α =
1

2
x⃗⊺0Hx⃗0

Then we see that in order to minimize f, we want to choose x⃗ = x⃗0.
2.1.1 H is invertible (H is PD).

x⃗∗ = −H−1c⃗

2.1.2 H has non-trivial nullspace (H not invertible).

x⃗∗ = −H†c⃗ + ξ⃗ ξ⃗ ∈ N(H)

2.2 c⃗ ∉ R(H)
c⃗ = −Hx⃗0 + r⃗ r⃗ ∈ N(H⊺)

f(r⃗) =
1

2
r⃗⊺Hr⃗ + c⃗⊺r⃗

= 0 + −(Hx⃗0 + r⃗)
⊺r⃗

= −x⃗⊺0H
⊺r⃗ − r⃗⊺r⃗

= −∥r⃗∥22

By taking large multiple of r⃗ we see that p∗ =min f = −∞.

Theorem 8.4

Any equality constrained QP can be translated into unconstrained QP and read off
solution based on previous theorem.

8.b. Applications of QP
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Definition 8.5 (Linear Control)

A.k.a LQR problems, foundation for modern robotic control. Consider control problem

x(t + 1) = Ax(t) +Bu(t)

Note that

x(t) = Atx(0) +
t−1

∑
i=1

At−i−1Bu(i)

Example: goal = to reach g⃗ by time T. Then we have optimization problem

min ∥x⃗(T ) − g⃗∥22 +
T

∑
t=0

∥u(t)∥22

s.t. x(t) = Atx(0) +
t−1

∑
i=0

At−i−1Bu(1)

This is a complicated problem, but its constaints are entirely linear. With this optimization
problem we can solve for explicit sequence of optimal control, instead of using recursion
or dynamic programming.
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9. Second-order Cone Problems

Definition 9.1 (cone)

Set of points C ∈ Rn is a cone iff

αx⃗ ∈ C if x⃗ ∈ C ∀α ≥ 0

Definition 9.2 (convex cone)

C is a convex cone if
αx⃗ ∈ C ∀α ≥ 0 and θ1, θ2 ≥ 0

Then
θ1x⃗1 + θ2x⃗2 ∈ C

Example 9.3

C = {(x, y) ∣ y ≥ 0}

This cone has a feasible region of all region above x-axis.

Definition 9.4 (Polyhedron cone)

Polyhedron: {x⃗ ∣ Ax⃗ − b⃗}

Definition 9.5 (Ellipsoidal cone)

This is the kind of cone we are going to concern the most. Recall that

x⃗⊺Px⃗ + q⃗⊺x⃗ + r ≤ 0, P ≻ 0

Defines a ellipsoid. Consider

∥Ax⃗ + b∥22 ≤ c
2

x⃗⊺A⊺Ax⃗ + 2b⃗⊺Ax⃗ + b⃗⊺b⃗ − c2 ≤ 0

Then
{(x⃗, t) ∣ ∥Ax⃗ + b⃗t∥2 ≤ ct}

is an ellipsoidal cone.
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Remark 9.6 (Special case of Ellipsoidal cone (second-order cone))

Consider a second-order cone in R3

{(x⃗1, x⃗2, t) ∣
√
x⃗2
1 + x⃗

2
2 ≤ t}

is the ”ice cream cone” because it looks like a ice cream cup.

Definition 9.7 (SOCP)

min q⃗⊺x⃗

s.t. ∥Aix⃗ + bi∥2 ≤ c⃗
⊺
i x⃗ + d⃗i i = 1,2,⋯,m

Is a SOCP. It is a program with constraints that takes the form of a cone.

Example 9.8

min
x

m

∑
i=1

∥Aix⃗ − b⃗i∥2

Can be formulated into a SOCP:

min
x

m

∑
i=1

∥Aix⃗ − b⃗i∥2

= min
x,yi,∥Aix⃗−b⃗i∥2=yi

m

∑
i=1

yi relax the equality into inequality

= min
x,yi,∥Aix⃗−b⃗i∥2≤yi

m

∑
i=1

yi
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Example 9.9 (Facility Location Problem)

Say we want to place a facility (playground or ER, etc.) and we want this facility to be
close to people.

Example 9.10 (Trilateration/GPS)

A packet is transmitted at tTi and received at tRi with an offset δ such that

ttruei = tRi + δ

• Time of flight fi = ttruei − tTi = t
R
i + δ − t

T
i =∆i + δ

• Distance cfi = c∆i + cδ = ∥x⃗ − q⃗i∥2

Where c = the speed of light, x is the current location and q is the satellite location. We
use 4 satellites, sqare all the equations, and substract them from the equation of satellite
#4.

∥x − q4∥
2
2 − ∥x − q1∥

2
2 = x

⊺x − x⊺x + 0x + const

2(q4 − q)
⊺x + 2c2(∆4 −∆1)δ = c

2(∆2
1 −∆

2
4) + ∥q4∥

2
2 − ∥q1∥

2
2

But what if instead of four satellites, we only have three satellites? We can solve this via
SOCP by constructing optimization problem

min δ

s.t. 2(q3 − q1)
⊺x + 2c2(∆3 −∆1)δ = c

2(∆2
1 −∆

2
3) + ∥q3∥

2
2 − ∥q1∥

2
2

2(q3 − q2)
⊺x + 2c2(∆3 −∆2)δ = c

2(∆2
2 −∆

2
3) + ∥q3∥

2
2 − ∥q2∥

2
2

∥x − q3∥2 = c∆3 + cδ
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10. Newton’s Method

Remark 10.1

We call gradient descent a ”first-order method” because it works by taking the first-order
derivative of the object function. Newton’s Method is a ”second-order method.”

Definition 10.2

min f(x). Want x⃗0, x⃗1 converge to x⃗, which is the optimal. Then the Newton step is
defined as

xk+1 = xk − (∇
2f(xk))

−1∇f(xk)

Assuming that f is convex and Hessian is PD (so it’s invertible).

Remark 10.3

For cases where Hessian is PSD, there is a family of method called Quasi-Newton
methods which solve the problem using Newton’s method approach but pretend the
problem is second-order differentiable. It’s a simple idea and we should not be intimidated
by the jargon.

Remark 10.4

Newtons’ method does not have a η. You can do Newton’s method by manually plugging
in a stepsize but by default the stepsize is always 1.

Remark 10.5 (Pros and Cons of the Newton’s method)

Pros:

• Converge faster than GD

Cons:

• You have to do a Hessian inversion everytime, which is computationally expensive.

Sometimes it is cheaper to just compute the gradient, but gradient descent also takes more
steps. Therefore most of the times it is unclear to us which method is computationally
cheaper.
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