
CS 170, Fall 2022

Zhiyu Ryan An CS 170 - Efficient Algorithms and Intractable Problems

Contents

1. Big-O Notation 3

2. Divide-and-conquer Algorithms 4
2.a. Multiplication . 4
2.b. Recurrence Relations . 4
2.c. Mergesort . 4
2.d. Medians . 5
2.e. Matrix Multiplication . 6
2.f. Fast Fourier Transform . 6

3. Decomposition of Graphs 7
3.a. DFS in Undirected Graphs . 7
3.b. DFS in Directed Graphs . 7
3.c. Strongly Connected Components . 9

4. Paths in Graphs 11
4.a. Distances . 11
4.b. BFS . 11
4.c. Lengths on Edges . 11
4.d. Dijkstra’s . 11
4.e. Priority Queue Implementation . 11
4.f. Shortest Paths in the Presence of Negative Edges 11
4.g. Shortest Paths in DAGs . 11

2

Zhiyu Ryan An CS 170 - Efficient Algorithms and Intractable Problems

1. Big-O Notation

Definition 1.1

Let f(n) and g(n) be functions from positive integers to positive reals. We say f = O(g)
if there is a constant c > 0 such that f(n) ≤ cg(n)

Saying f = O(g) is a very loose analog of “f ≤ g.”

Definition 1.2

f = Ω(g) ⇐⇒ g = O(f)

f = Θ(g) ⇐⇒ f = O(g) ∧ f = Ω(g)

Saying f = Ω(g) is a very loose analog of ”f ≥ g,” and therefore f = Θ(g) means that f and
g takes, in average, the time to run as the input size grows (g encloses f both from above and
below).

Example 1.3

TODO

3

Zhiyu Ryan An CS 170 - Efficient Algorithms and Intractable Problems

2. Divide-and-conquer Algorithms

2.a. Multiplication

Definition 2.1 (Integer Multiplication)

A divide-and-conquer algorithm for integer multiplication is defined as follows:

1 function mul(x(0b[1...k]), y(0b[1...h]))

2 %Input: Positive integers x, y in binary

3 %Output: x times y

4

5 n = max(size of x, size of y)

6 if n == 1: return x × y
7

8 xL, xR = x(0b[1...⌈n/2⌉]), x(0b[⌊n/2⌋...n])
9 yL, yR = y(0b[1...⌈n/2⌉]), y(0b[⌊n/2⌋...n])

10

11 P1 =mul(xL, yL)
12 P2 =mul(xR, yR)
13 P3 =mul(xL + xR, yL + yR)

14 return P1 × 2
n
+ (P3 − P1 − P2) × 2

n/2
+ P2

Where 0b[1...k] denotes the binary string representing a number.

Each call of mul has three recursive calls, inputs of which are half the size of the original
inputs, and the base cases (x times y) take constant time. Therefore we conclude that the
time taken by this algorithm is

T (n) = 3T (n/2) +O(n)

Apply the Master Algorithm in Chap 2.b, we conclude that the time complexity of this
algorithm is

T (n) ∈ Θ(nlog2 3) ≈ Θ(n1.585
)

2.b. Recurrence Relations

Theorem 2.2 (Master Algorithm)

If T (n) = aT (n/b) + cnk and T (1) = c for some constants a, b, c and k, then

T (n) ∈

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

Θ(nk
) if a < bk

Θ(nk logn) if a = bk

Θ(nlogb a) if a > bk

2.c. Mergesort

4

Zhiyu Ryan An CS 170 - Efficient Algorithms and Intractable Problems

Definition 2.3 (Mergesort)

The Mergesort algorithm is defined as follows:

1 function mergesort(a[1...n])

2 %Input: An array of numbers a[1...n]

3 %Output: Sorted array a

4

5 if n>1:

6 return merge(mergesort(a[1...⌊n/2⌋]), mergesort(a[⌊n/2⌋+1...n]))
7 else:

8 return a

9

10 function merge(x[1...k], y[1...h])

11 %Input: Two arrays of numbers (x[1...k], y[1...h])

12 %Output: An array of numbers in x and y in ascending order

13

14 if k=0: return y

15 if l=0: return x

16 if x[1] <= y[1]:

17 return x[1] ○ merge(x[2...k], y[1...h])

18 else:

19 return y[1] ○ merge(x[1...k], y[2...h])

Where ○ denotes concatenation.

The merge function above does a constant amount of work (concatenating two arrays) per
recursive call, for a total running time of O(k + h). Thus the calls to merge in mergesort are
linear, we conclude that the overall time taken by mergesort is

T (n) = 2T (n/2) +O(n)

Recall the Master Algorithm in Chap 2.b, we conclude that the time complexity of this
algorithm is

T (n) ∈ Θ(n logn)

Remark 2.4

n logn is the lower bound for sorting, and therefore mergesort is optimal.

Proof. Sorting algorithms can be depicted as trees that each non-leaf node represents a
comparison between two elements, and each leaf denotes a permutation of the input array
(and thus a binary search tree since each non-leaf nodes have two children). Consider
such tree that sorts an array a[1...n]. The total number of the leaves is n!. A binary tree
of depth d has at most 2d leaves. Therefore, the depth of the tree and the complexity of
this algorithm should be at least log(n!), which is the worst case of this algorithm. Since
log(n!) ≤ cn log(n), we conclude that n log(n) is optimal for sorting algorithms. ∎

2.d. Medians

5

Zhiyu Ryan An CS 170 - Efficient Algorithms and Intractable Problems

Definition 2.5 (selection)

A randomized divide-and-conquer algorithm for selection is defined as follows

2.e. Matrix Multiplication

Definition 2.6

2.f. Fast Fourier Transform

6

Zhiyu Ryan An CS 170 - Efficient Algorithms and Intractable Problems

3. Decomposition of Graphs

3.a. DFS in Undirected Graphs

Definition 3.1 (explore)

Finding all nodes reachable from a particular node.

1 procedure explore(G, v):

2 % Input: Graph G = (V, E), v a node in V

3 % Output: u.visited is set true for all node u reachable from v

4 v.visited = true

5 previsit(v)

6 foreach (v, u) in E:

7 if not u.visited: explore(G, u)

8 postvisit(v)

Where previsit(v) and postvisit(v) denotes the ”time” τ before and after v is explored,
respectively.

Definition 3.2 (DFS)

Based on Definition of explore, a DFS procedure is as follows:

1 procedure DFS(G)

2 % Input: Graph G = (V, E)

3 forall v in V:

4 if not v.visited: explore(v)

Definition 3.3 (ordering)

The previsit and postvisit ordering is defined as follows:

1 procedure previsit(v)

2 pre[v] = clock

3 clock += 1

4 procedure postvisit(v)

5 post[v] = clock

6 clock += 1

Remark 3.4

The implementation of a DFS uses a stack and DFS’s runtime is O(∣V ∣ + ∣E∣).

3.b. DFS in Directed Graphs

7

Zhiyu Ryan An CS 170 - Efficient Algorithms and Intractable Problems

Definition 3.5 (Type of Edges)

There four types of edges:

• Tree edges are part of the DFS forest

• Forward edges lead to a nonchild descendant

• Back edges lead to a not-direct ancestor

• Cross edges lead to a node that is neither descendant nor ancestor, a node that has
already been completely explored.

An edge (u, v) in E is:

• Forward if pre(u) < pre(v) < post(v) < post(u)

• Back if pre(v) < pre(u) < post(u) < post(v)

• Cross if pre(v) < post(v) < pre(u) < post(u)

Definition 3.6

A directed graph has a cycle iff its DFS reveals a back edge. If the DFS of a directed
graph reveals no back edge, the graph is a Directed Acyclic Graph (DAG).

Theorem 3.7

All DAG can be linearized (topologically sorted). That is, if G(V, E) is a DAG with (u,
v) in E, then post(u) > post(v).

Theorem 3.8

All DAG must have at least one source (a node with no ingoing edges) and at least one
sink (a node with no outgoing edges).

Theorem 3.9

A DAG, after delete one of its sources, is still a DAG.

8

Zhiyu Ryan An CS 170 - Efficient Algorithms and Intractable Problems

Theorem 3.10

A DAG have one or more possible linearizations. The following algorithm,

1 procedure linearize(G)

2 while G:

3 find a source s in G

4 pop s

Is guaranteed to give a linearization.

Remark 3.11

In a DF traverse of a binary tree, the visiting order of nodes can be found by labeling
the graph like follows:

Where red dots denote preorder, green dots denote in-order, and blue dots denote
post-order.

3.c. Strongly Connected Components

Definition 3.12 (Node connectivity)

Two nodes u and v of a directed graph are connected if there is a path from u to v and a
path from v to u.

Definition 3.13 (Strongly Connected)

Disjoint sets in V partitioned by the connectivity relations are strongly connected
components.

9

Zhiyu Ryan An CS 170 - Efficient Algorithms and Intractable Problems

Theorem 3.14

All directed graph is a DAG of its strongly connected components.

10

Zhiyu Ryan An CS 170 - Efficient Algorithms and Intractable Problems

4. Paths in Graphs

4.a. Distances

4.b. BFS

4.c. Lengths on Edges

4.d. Dijkstra’s

4.e. Priority Queue Implementation

4.f. Shortest Paths in the Presence of Negative Edges

4.g. Shortest Paths in DAGs

11

	Big-O Notation
	Divide-and-conquer Algorithms
	Multiplication
	Recurrence Relations
	Mergesort
	Medians
	Matrix Multiplication
	Fast Fourier Transform

	Decomposition of Graphs
	DFS in Undirected Graphs
	DFS in Directed Graphs
	Strongly Connected Components

	Paths in Graphs
	Distances
	BFS
	Lengths on Edges
	Dijkstra's
	Priority Queue Implementation
	Shortest Paths in the Presence of Negative Edges
	Shortest Paths in DAGs

