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HVAC control in smart buildings

Objective #1:

Thermal Comfort

Higher
Comfort time/kWh

or

Other appliances - 50%

Heating, Ventilation, and
Air Conditioning
(HVAC) system HVAC - 50%
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Objective #2:

Power Consumption




HVAC control in smart buildings

Rule-based decision-making Energy Efficiency
() @
— {%} — “ baseline

Heating, Ventilation, and
Air Conditioning
(HVAC) system

® LAl THE CHIPS
r. TO SYSTEMS
A

ME NEXT GENERATION OF ELECTRONICS




HVAC control in smart buildings

Rule-based decision-making Energy Efficiency
() @
— {%} — “ baseline

Data-driven predictive control agent

o o il 3
Heating, Ventilation, and < — ' m— 10% less energy /
Air Conditioning

(HVAC) system
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HVAC control in smart buildings

observation

=

dynamics model

- <G

= R

optimizer

UUUUUU

action
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The trustworthiness challenge of control agents

A
e A

interpretable & verifiable

We want to guarantee that the @ will always make decisions that are “safe”

dynamics model

- <G

optimizer

UUUUUU

| | | | | | w
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The trustworthiness challenge of control agents

We want to guarantee that the @
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dynamics model

<G

optimizer

UUUUUU

| | | | | | w

. will always make decisions that are “safe”

A

;

N

interpretable & verifiable

Not interpretable

(incomprehensible decision process) ll

Stochastic

(chance of failure is always > 0)
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Rethinking the design of learning agent

A
e A

interpretable & verifiable

We want to guarantee that the @ will always make decisions that are “safe”

Interpretable

(human-readable decision process)

Deterministic

(enables safety verification)
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Rethinking the design of learning agent

A
e A

interpretable & verifiable

We want to guarantee that the @ will always make decisions that are “safe”

observation
< L Interpretable
E decision tree (human-readable decision process)
o O
| el
Deterministic
o (enables safety verification)
action
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Learning the decision tree

New problem: how to generate an decision tree capable of high-efficiency decisions from data?

observation

<

decision tree

L=

~ -

action
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Learning the decision tree

Use the original agent as the optimizer
observation

=

dynamics model

observation ,
] train
C@ Data
<5

decision tree

z optimizer
‘}/T—:—_*—_*—‘
i T_’
action e

(optimized) action
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Learning the decision tree

observation

=

dynamics model

joint

observation :
train

<~ = Data
. Gather decision data C@
decision tree

{observation, : : _
z action} optimizer
<&

action jOInt *L! >

(optimized) action
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Learning the decision tree

observation

=

dynamics model

joint

observation | oo decision tree train
< -
decision data Data
=

decision tree

{observation, {observation,

! %! action}*N action} optimizer

*} joint ]

action R
<+

(optimized) action
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Learning the decision tree

exhaust all combinations of observation can take prohibitively long time

| observation |
~~

dynamics model

observation joint train
decision data Data
decision tree
: <+
{observation, {observation, ootimizer
ﬁ action}*N action} P
action jOInt j_! >
<5

(optimized) action
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Learning the decision tree

Pittsburgh (JSD=0.54) New York (JSD=0.52)

30 30 4.9e-3
2 25 25
g :
S5 20 20 3.7e-3%=
€ s : 15/ 5
o 1° ! a)
e 10 ! 10- 2.5e32
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S 0 : ' 11.2e-3 9
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-10 - ' - - - - -10 ———————————— —0
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® L QI THE CHIPS
r. TO SYSTEMS
4

SHADINS THE NEXT GENERATION OF ELECTRONICS




Learning the decision tree

Insight: real-world HVAC data is heavily biased
=> No need to exhaust all combinations; just follow the existing data distribution!

Pittsburgh (JSD=0.54) New York (JSD=0.52)

30 30 4.9e-3
summer

% 25 25- il

S 20 : 20 SCIPG 3.7e-32

& = c

= 1b . 15 A

Q - daytime >

- 101 101 256-32 )

g 5| = : 51 8 B Data

§ 01 ! 01 ' i 12e-3-§

S - fnight time winter &

8 79 =31 setpoint
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Learning the decision tree

We use the following noise-addition function as the sampling strategy:

\

- —
Sampling distribution —— p(x) = X+N(0, noise level X \/Z(xI,X| x) )
f

data distribution
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Learning the decision tree

We use the following noise-addition function as the sampling strategy:

— L — 2 .
Sampling distribution —— p(x) = X + N| 0,jnoise_level x \/Z(x|lx| X)
f

data distribution

is empirically determined to maximize entropy AND minimize distance to the original data:

Noise level

—— original + noise /
8.6 1 ------ similar city

————— original

o
FS

=
w

similar distance as to
a difference city

data with Gaussian noise
has higher entropy

Jensen-Shannon Distance
o
N

8.2
0.1 —— original -> original + noise VA S A I SR
------ original -> similar cit
0.0 g y 8. 0+ b=t
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

noise level (*std) noise level (*std)
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Learning the decision tree

_ sample + noise
observation =

=

dynamics model

observation joint train
decision data Data

decision tree
; <+
{observation, {obser_vatlon, optimizer
action}*N action; P
action joint e N
>
<Lt

(optimized) action
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Verifying the decision tree

How to verify the safety of a decision tree policy?

observation

< bt

decision tree

!

~=

action
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Verifying the decision tree

How to verify the safety of a decision tree policy?

observation 1. Incorporate human heuristic logical propositions between input and output

decision tree “If [input x] is in [certain range], then the action should be in [certain range]”

!

~=

action
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Verifying the decision tree

How to verify the safety of a decision tree policy?

observation 1. Incorporate human heuristic logical propositions between input and output

decision tree

ﬁ We consider two scenarios:

If the room is occupied and the temperature is cooler than the comfort range

4T -> setpoint > current temperature (turn on heating)
action If the room is occupied and the temperature is hotter than the comfort range

=> setpoint < current temperature (turn on cooling)
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Verifying the decision tree

In decision tree, each decision node makes a comparison with one input parameter.

This split the input space with a hyperplane.
time /

decision node Input space temp

leaf node

time E

temp € [ 00, oo]

t1me<7/\

time € [—oo 7] time € (7, 00]
temp € | temp € [—00, 00|

| L {
s e Eme -
|

k setpoint = 23 )k setpoint = 22 j k setpoint = 23 j \_ setpoint =15 )
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Verifying the decision tree

Each leaf node corresponds to a region in the input space;
We can find this region for each leaf node

decision node

leaf node .
[ time € [—00, 00] 1

temp € [—o00, 0]

time§7/\

time € [—o0, 7] time € (7, 00]
temp € [—o0, 0] temp € [—00, 0]

| | | |
S e —

k setpoint = 23 )k setpoint = 22 j k setpoint = 23 j \_ setpoint =15 )
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Verifying the decision tree

Each leaf node corresponds to a region in the input space;

We can find this region for each leaf node

decision node

leaf node

time E

temp € [ 00, oo]

t1me<7/\

time € [—oo 7] time € (7, oo]
temp € |

R—— MW

k setpoint = 23 )k setpoint = 22 j k setpoint = 23 j \_ setpoint =15 )
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Verifying the decision tree

Each leaf node corresponds to a region in the input space;
We can find this region for each leaf node

decision node

leaf node
time E

temp € [ 00, oo]

t1me<7/\

[ time € [—oo 7] time € (7, 00] J

temp € | temp € [—00, 0]

| | ep

time € (7.5,21] | time € (7.5,21] time € (7.5,21] | ( time € (7.5, 21] [ J
temp € [—o0,17] temp € (17,19.5] temp € (22.5, 28] temp € (28, o0 /\

k setpoint = 23 )k setpoint = 22 j k setpoint = 23 j \_ setpoint =15 )
time € (7.5, 21] time € (7.5, 21]
t temp € (28, oo

emp € (22.5, 28]
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Verifying the decision tree

Then assert the input-output logic propositions for each leaf node

decision node

leaf node

time € [—00, 00]

temp € [—o00, 0]

t1me<7/\

error!

[ time € [—o0, 7] time € (7, 00] J

temp € [—o0, 0] temp € [—00, 0]

time € (7.5,21] [ time € (7.5, 21] time € (7.5,21] ) time € (7.5,21]
temp € [—00, 17] temp € (17,19.5] temp € (22.5, 28] temp € (28, 00
| setpoint = 23 { setpoint =22 | | k setpoint = 23 ) (__ setpoint =15 )

temp € [—00,20) temp € (22.5, 00|
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Verifying the decision tree

We also use probabilistic verification in addition to formal proposition verifications
with Monte Carlo method

imaginary rollout with the agent

safe states

[ ] violation

Start state & >~ Measure the probability of failure
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Summary of our approach

learning the decision tree agent verifying the agent

AN N

time € [—o00, o]
temp € [—o0, 00]

fail node detected.

Stochastic optimizer decision node

‘——-i i '—| time < 7 i
historical p(:l:) BE LU T } leaf node — : correc_tlon.
data time € [—00, 7] time € (7, o] . set setpoint to 15
|_ ~ Dynamics B8 contriilos temp € [— o0, 00] mpe ] | ey
model

R

time € (7,16.5] time € (16.5, 21]
temp € (21.5,22.5] | | temp € (20.5,22.5]

¢

time € (7.5,21] time € (7.5, 21]
temp € [—o0, 17] temp € (17,19.5]

( time ¢ (7.5,21] ]( time € (7.5,21]

Safety verification temp € (22.5, 28] temp € (28, ]

=g vetrriied 1. Criterion #1 : probabilistic e dGet?e.rate (_setpoint =23 ){_setpoint =22 ) ! {_setpoint =18 ){_setpoint =15 ) ! {_setpoint =23 ) {_setpoint =15 )
B . ecision tree
1l €= 2. Criteria #2&#3 : formal < temp € [—o0, 20) temp € [20, 22.5] temp € (22.5, 00|

3. Correct any failed leaf nodes

subject to criterion #2 subject to criterion #1 subject to criterion #3

during formal verification

method: decision path verification method: probabilistic verification method: decision path verification
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Experiment Results

->
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Simulation experiments with EnergyPlus

€ Two cities: Pittsburgh, Tucson. Real weather profile.
Research questions to answer:

€ Does our method provide superior energy efficiency?
€ Does it converge fast enough?

€ Does the tree size explode to unmanageable scale?
4

Does it run fast on edge devices?




Experiment Results

Our method results in superior energy efficiency compared with previous state-of-the-arts

. Pittsburgh Tucson
‘ ! J i
§ 1260 - @ 470 ’ 2
.54 a
= 1240 480
c
.2 1220 450
CE" 12004 440 qetter
3 1180 SR |
5 420 - —
@) 1160 AT saves 68.4% |more energy|on average
2 1140 § o | | |
e \ 4 400 1 s
2 112010 I . ~ v
L | . | 390 ; : ; : ; ;
0.085 0.090 0.095 0.100 0.3050.3100.3150.3200.3250.330
Violation Rate Violation Rate

@ default agent ¥ MBRL_agent B CLUE ¢ DT agent (ours)
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Experiment Results

Our method converges with small amount of data and decision tree nodes.

) @
r‘ 4
e

Pittsburgh Tucson
o 18- 18 e T e
§ 1.6 1.6 1
&g 1.4 - 1.4 -
o L2 1.21
g 1.0 A 1.0 A
LEI 0.8 ‘/_ 0.8 -
0 560 10I00 15|00 20I00 25I00 3000 0 5(I)0 10I00 15I00 20I00 25IOO 3000
No. of decision data No. of decision data
Pittsburgh | Tucson
Total No. of nodes 1199 3291
No. of leaf nodes (unique path) 599 1646
Safe probability estimated by crit. #1 94.6% 95.1%
No. of nodes corrected by crit. #2 0 0
No. of nodes corrected by crit. #3 0 88
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Experiment Results

Our method uses 1127x less time during online inference. Suitable for all edge devices!

default [12] | MBRL [9] | CLUE [1] | DT (ours)
average (ms) 0.0 212.87 326.30 0.1888
std (ms) 0.0 266.89 102.30 0.4423




Thank you

Ryan (Zhiyu) An

zan/@ucmerced.edu

Code available at https://github.com/rveii/Veri_ HVAC
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