

ग

ê

ရီမိုရိ

F

A20

Q

01010

JUNE 23-27, 2024

MOSCONE WEST CENTER SAN FRANCISCO, CA, USA

Go Beyond Black-box Policies: Rethinking the Design of Learning Agent for Interpretable and Verifiable HVAC Control

â

(F)

APG T

Ryan (Zhiyu) An, Xianzhong Ding, Wan Du University of California, Merced

Heating, Ventilation, and Air Conditioning (HVAC) system

Objective #1: Thermal Comfort

Higher

Comfort time/kWh

THE CHIPS TO SYSTEMS CONFERENCE

Heating, Ventilation, and Air Conditioning (HVAC) system Rule-based decision-making

Energy Efficiency

baseline

Heating, Ventilation, and Air Conditioning (HVAC) system

Rule-based decision-making

Energy Efficiency

baseline

Data-driven predictive control agent

The trustworthiness challenge of control agents

The trustworthiness challenge of control agents

Rethinking the design of learning agent

We want to guarantee that the will always make decisions that are "safe"

Interpretable

(human-readable decision process)

Deterministic

(enables safety verification)

interpretable & verifiable

Rethinking the design of learning agent

New problem: how to generate an decision tree capable of high-efficiency decisions from data?

(optimized) action

Use the original agent as the optimizer

exhaust all combinations of observation can take prohibitively long time

Insight: real-world HVAC data is heavily biased

→ No need to exhaust all combinations; just follow the existing data distribution!

We use the following noise-addition function as the sampling strategy:

Sampling distribution
$$\longrightarrow \widehat{p(x)} = X + \mathcal{N}\left(0, \text{noise_level} \times \sqrt{\frac{\sum (x_i - \overline{x})^2}{|X|}}\right)$$

data distribution

We use the following noise-addition function as the sampling strategy:

Sampling distribution
$$\longrightarrow \widehat{p(x)} = X + \mathcal{N}\left(0, \underline{\text{noise_level}} \times \sqrt{\frac{\sum (x_i - \overline{x})^2}{|X|}}\right)$$

data distribution

Noise_level is empirically determined to maximize entropy AND minimize distance to the original data:

How to verify the safety of a decision tree policy?

How to verify the safety of a decision tree policy?

- 1. Incorporate human heuristic logical propositions between input and output
- "If [input x] is in [certain range], then the action should be in [certain range]"

How to verify the safety of a decision tree policy?

1. Incorporate human heuristic logical propositions between input and output

"If [input x] is in [certain range], then the action should be in [certain range]"

We consider two scenarios:

If the room is occupied and the temperature is cooler than the comfort range

→ setpoint > current temperature (turn on heating)

If the room is occupied and the temperature is hotter than the comfort range

→ setpoint < current temperature (turn on cooling)</p>

In decision tree, each decision node makes a comparison with one input parameter. This split the input space with a hyperplane.

Each leaf node corresponds to a region in the input space; We can find this region for each leaf node

Each leaf node corresponds to a region in the input space; We can find this region for each leaf node

Each leaf node corresponds to a region in the input space; We can find this region for each leaf node

Then assert the input-output logic propositions for each leaf node

We also use probabilistic verification in addition to formal proposition verifications with Monte Carlo method

Summary of our approach

- → Simulation experiments with EnergyPlus
 - Two cities: Pittsburgh, Tucson. Real weather profile.
- → Research questions to answer:
 - Does our method provide superior energy efficiency?
 - Does it converge fast enough?
 - Does the tree size explode to unmanageable scale?
 - Does it run fast on edge devices?

Our method results in superior energy efficiency compared with previous state-of-the-arts

Our method converges with small amount of data and decision tree nodes.

Our method uses 1127x less time during online inference. Suitable for all edge devices!

	default [12]	MBRL [9]	CLUE [1]	DT (ours)
average (ms)	0.0	212.87	326.30	0.1888
std (ms)	0.0	266.89	102.30	0.4423

Thank you

Ryan (Zhiyu) An

zan7@ucmerced.edu

Code available at https://github.com/ryeii/Veri_HVAC

