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Preliminary Experiment Setting
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● Single thermal zone

● Five-layer Neural Network [1]

[1] Ding et al. MB2C: Model-based Deep Reinforcement Learning for Multi-zone Building Control. ACM BuildSys. 2020
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1. Building data is intrinsically biased

2. Biased data result in inaccurate model
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Our Method: Uncertainty-Aware Controller
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Gaussian Process Data Efficiency

RBF kernel:

+ =

KernelData Model

Challenge: how to efficiently tune the GP kernel hyperparameters?
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Our Solution: Meta Kernel Learning

GP kernel (global)

Building A

Building B

Building C

Fitted 
model

Meta-learning 
dataset 3. Update kernel parameters

2. Evaluate loss

1. Fit 
GP

Model
 inputs

Ground
 truth 

outputs

Use data from similar buildings to tune the hyperparameters!
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Experiment

● Three locations: Pittsburgh, Tucson, New York

● Data efficiency

● Building control performance

○ Energy usage

○ Comfort violation rate

● Platform: EnergyPlus
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Experiment - Data Efficiency

CLUE converges >30x faster than previous SOTA
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Experiment - Building Control #1

CLUE produces 12.07% lower violation rates compared w/ previous SOTA
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Experiment - Building Control #2

Similar energy saving w/ previous SOTA
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Conclusion

● We are the first to include epistemic uncertainty estimation in 

MBRL for HVAC.

● We proposed CLUE, a data-efficient and safe MBRL control 

method for HVAC, consists of meta kernel learning and 

uncertainty-aware control.

● We evaluated CLUE with extensive simulation experiments in 

three different locations.

Code+data available at https://github.com/ryeii/CLUE/

https://github.com/ryeii/CLUE/
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Experiment - Data Efficiency

Setting Result

CLUE converges >30x faster than 
previous SOTA

Produces comparable accuracy given 
the same data
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No, high model errors persists 
even after very large dataset is 
used

No, high model errors often 
appear in clusters

2. Can we let the building system 
tolerate short periods of controller 
glitches?

1. Can we mitigate high model 
errors by training on more data?
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1. Human designed rules
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Data
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Autonomous
Current SOTA

3. Neural dynamics model + optimizer
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