CLUE: Safe Model-Based RL HVAC <u>ControL</u> Using Epistemic <u>Uncertainty Estimation</u>

Zhiyu (Ryan) An, Xianzhong Ding, Arya Rathee, Wan Du

University of California, Merced

ACM BuildSys 2023, Istanbul, Turkey

HVAC control in smart buildings

Other appliances - 50% Power Consumption HVAC - 50%

Heating, Ventilation, and Air Conditioning (HVAC) system

Thermal Comfort

Model-based Reinforcement Learning for HVAC control

[1] Ding et al. MB2C: Model-based Deep Reinforcement Learning for Multi-zone Building Control. ACM BuildSys. 2020

[1] Ding et al. MB2C: Model-based Deep Reinforcement Learning for Multi-zone Building Control. ACM BuildSys. 2020

Model-based Reinforcement Learning for HVAC control

The model's prediction need to be accurate. Can we boost accuracy with more data?

[1] Ding et al. MB2C: Model-based Deep Reinforcement Learning for Multi-zone Building Control. ACM BuildSys. 2020

Model error persists with larger datasets.

Why?

[1] Ding et al. MB2C: Model-based Deep Reinforcement Learning for Multi-zone Building Control. ACM BuildSys. 2020

Model errors are significantly higher for less frequently seen inputs. Cause of model errors: distribution shift!

- Distribution shift causes high model errors, which misleads the controller
- Overfitting on the frequent data won't help with unusual/unseen inputs.

Challenge

- Distribution shift causes high model errors, which misleads the controller
- Overfitting on the frequent data won't help with unusual/unseen inputs.

Instead of focusing on fitting an accurate model,
Can we make the controller to be aware about the uncertainty?

CLUE: a data-efficient and uncertainty-aware model-based RL method

Instead of using a traditional controller like this.....

$$\begin{array}{ll} \mathsf{RBF} \ \mathsf{kernel:} & k(x,x') = \theta_{\mathrm{scale}} \exp\left(-\frac{1}{2}(x-x')^\top \Theta^{-2}(x-x')\right) \\ & \bullet \\ & \theta_{\mathcal{GP}} : \{\theta_{\mathrm{scale}}, \Theta \in \mathbb{R}^{|\mathcal{X}| \times |\mathcal{X}|}\}, \mathcal{X} : \mathrm{input} \ \mathrm{space} \end{array}$$

parameter space scales quadratically with feature number.

$$\begin{array}{ll} \mathsf{RBF} \ \mathsf{kernel:} & k(x,x') = \theta_{\mathrm{scale}} \exp\left(-\frac{1}{2}(x-x')^\top \Theta^{-2}(x-x')\right) \\ & \bullet \\ & \theta_{\mathcal{GP}} : \{\theta_{\mathrm{scale}}, \Theta \in \mathbb{R}^{|\mathcal{X}| \times |\mathcal{X}|}\}, \mathcal{X} : \mathrm{input} \ \mathrm{space} \end{array}$$

parameter space scales quadratically with feature number.

Challenge: how to efficiently tune the GP kernel hyperparameters?

Solution: meta kernel learning

Use data from similar buildings to tune the hyperparameters!

Solution: meta kernel learning

Use data from similar buildings to tune the hyperparameters!

Solved data efficiency!

- Three locations: Pittsburgh, Tucson, New York
- Data efficiency
- Building control performance
 - Energy usage
 - Comfort violation rate

Evaluation - Data Efficiency

CLUE converges >30x faster than previous SOTA

Produces more accurate model given the same data

Evaluation - Building Control

CLUE produces 12.07% lower violation rates compared w/ previous SOTA

Similar energy saving w/ previous SOTA

- We are the first to include epistemic uncertainty estimation in shooting-based control for HVAC.
- We proposed *CLUE*, a data-efficient and safe MBRL control method for HVAC, consists of meta kernel learning and confidence-based control.
- We evaluated *CLUE* with extensive simulation experiments in three different locations.

Code+data available at https://github.com/ryeii/CLUE/

Location	Time	Deep Ensemble [11]			GP			GP-M (ours)		
		Accuracy	Precision	Recall	Accuracy	Precision	Recall	Accuracy	Precision	Recall
Pittsburgh, PA	January	.796±.00	$.521 \pm .01$	$.740 \pm .01$.877±.00	$.803 {\pm} .00$.958±.00	.884±.00	$.768 \pm .00$	$.677 \pm .00$
	July	.831±.01	.851±.09	$.160 \pm .10$	$.840 \pm .00$	$.809 \pm .00$	$.763 \pm .00$.961±.00	$.056 \pm .00$.999±.00
Tucson, AZ	January	.736±.01	$.439 \pm .08$	$.693 \pm .12$.847±.00	$.697 {\pm} .00$	$.844 {\pm} .00$.932±.00	$.341 \pm .00$	$.694 \pm .00$
	July	$.650 \pm .00$	$.489 \pm .00$	$.827 \pm .00$	$.844 \pm .00$	$.854 {\pm} .00$	$.860 \pm .00$.947±.00	$.036 \pm .00$.999±.00
New York, NY	January	.830±.00	$.403 \pm .02$	$.816 \pm .00$	$.855 \pm .00$	$.883 {\pm} .00$	$.728 \pm .00$.965±.00	$.299 \pm .00$	$.900 \pm .00$
	July	$.679 \pm .00$	$.373 \pm .01$	$.812 \pm .01$.797±.00	$.934 {\pm} .00$	$.718 \pm .00$.953±.00	$.205 \pm .00$	$.947 {\pm} .00$

Performance analysis

Computation overhead

No, high model errors persists even after very large dataset is used

No, high model errors persists even after very large dataset is used

2. Can we let the building system tolerate short periods of controller glitches?

No, high model errors persists even after very large dataset is used

2. Can we let the building system tolerate short periods of controller glitches?

No, high model errors often appear in clusters