Data Efficient HVAC Control using Gaussian Process-based Reinforcement Learning

Xianzhong Ding Zhiyu An Wan Du

University of California, Merced

2. Challenge and key solution idea

Challenge: biased data distribution; dynamics model fails to generalize with out-of-distribution inputs. Key idea: instead of try to fit an accurate model, make the controller be aware about the uncertainty. Solution: an epistemic uncertainty-aware control algorithm.

Uncertainty-aware control algorithm

Gaussian Process + Model Predictive Control

The controller considers the uncertainty provided by the Gaussian Process dynamics model.

3. Challenge with Gaussian Process Hyperparameters

GP performance depends on well-tuned kernel hyperparameters, which is not data-efficient.

parameter space scales guadratically with feature

To automatically and effectively set kernel hyperparameters, we use meta learning to learn kernel initialization from reference building data. This significantly improves data efficiency.

4. Experiment results using EnergyPlus simulations

Training data:

MBRL-SOTA: 1200 days target bldg. CLUE (ours): 3*300 days reference bldg. + 7 days target bldg.

	Pittsburgh	Tucson	New York	Avg.	
Rule-based	.111	.333	.163	.203	
MBRL-SOTA	.098	.332	.141	.190	12 07% less comfort
CLUE	.089	.304	.109	.167	violation.
Table 1: Comfort violation rate results.					
(kWh)	Pittsburgh	Tucson	New York	Avg.	
Rule-based	1263.3	467.0 —	<mark>ן 582.9</mark>	772.1	0
MBRL-SOTA	1117.9	388.3	838.5	781.5	Similar energy savings
CLUE	1134.1	437.5 🗲	851.8	807.8	with the previous 501A
Table 2: Energy savings results.					

An et al. (2023). CLUE: Safe Model-based RL HVAC Control Using Epistemic Uncertainty Estimation. BuildSys'23